Rheumatology International

, Volume 32, Issue 2, pp 317–321

Serum levels of soluble CD21 in patients with systemic sclerosis

  • Manabu Tomita
  • Takafumi Kadono
  • Norihito Yazawa
  • Tomohiko Kawashima
  • Zenshiro Tamaki
  • Ryuichi Ashida
  • Hanako Ohmatsu
  • Yoshihide Asano
  • Makoto Sugaya
  • Masahide Kubo
  • Hironobu Ihn
  • Kunihiko Tamaki
  • Shinichi Sato
Original Article

Abstract

Systemic sclerosis (SSc) is a systemic disorder that typically results in fibrosis of the skin and multiple internal organ systems. Although the precise mechanism is unknown, overproduction of extracellular matrix proteins, including collagens and fibronectins, and aberrant immune activation might be involved in the pathogenesis. The soluble cluster of differentiation 21 (sCD21) represents the extracellular portion of the CD21 glycoprotein that is released by shedding from the cell surfaces into plasma. sCD21 binds complement fragments and activates monocytes through binding to membrane CD23. The present study was undertaken to investigate the serum levels of sCD21 in patients with SSc. Serum sCD21 levels were reduced with age both in patients with SSc and normal controls. Serum sCD21 levels in patients with SSc were significantly decreased compared to those in control subjects. When we divided patients with SSc into limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc), patients with lcSSc had lower levels of serum sCD21 than those with dcSSc. Moreover, the prevalence of pulmonary fibrosis in the patients with dcSSc inversely correlated with serum sCD21 levels. Our finding may support the notion that B-cell activation is involved in the mechanism for pulmonary fibrosis and skin sclerosis.

Keywords

CD21 Enzyme-linked immunosorbent assay Pulmonary fibrosis Systemic sclerosis Limited cutaneous systemic sclerosis 

References

  1. 1.
    Mauch C, Eckes B, Hunzelmann N, Oono T, Kozlowska E, Krieg T (1993) Control of fibrosis in systemic scleroderma. J Invest Dermatol 100:92S–96SPubMedCrossRefGoogle Scholar
  2. 2.
    Le Roy EC (1992) A brief overview of the pathogenesis of scleroderma (systemic sclerosis). Ann Rheum Dis 51:286–288CrossRefGoogle Scholar
  3. 3.
    Cherukuri A, Cheng PC, Sohn HW, Pierce SK (2001) The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity 14:169–179PubMedCrossRefGoogle Scholar
  4. 4.
    Nielsen CH, Leslie RG (2002) Complement’s participation in acquired immunity. J Leuko Biol 72:249–261PubMedGoogle Scholar
  5. 5.
    Nielsen CH, Pedersen ML, Marquart HV, Prodinger WM, Leslie RG (2002) The role of complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment deposition and membrane attack complex formation on normal peripheral human B cells. Eur J Immunol 32:1359–1367PubMedCrossRefGoogle Scholar
  6. 6.
    Dempsey PW, Fearon DT (1996) Complement: instructing the acquired immune system through the CD21/CD19 complex. Res Immunol 147(71–75):119–120Google Scholar
  7. 7.
    Cherukuri A, Cheng PC, Pierce SK (2001) The Role of CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol 167:163–172PubMedGoogle Scholar
  8. 8.
    Myones BL, Ross GD (1987) Identification of a spontaneously shed fragment of B cell complement receptor type two (CR2) containing the C3d-binding site. Complement 4:87–98PubMedGoogle Scholar
  9. 9.
    Ling N, Hansel T, Richardson P, Brown B (1991) Cellular origins of serum complement receptor type 2 in normal individuals and in hypogammaglobulinemia. Clin Exp Immunol 84:16–22PubMedCrossRefGoogle Scholar
  10. 10.
    Huemer HP, Larcher C, Prodinger WM, Petzer AL, Mitterer M, Falser N (1993) Determination of soluble CD21 as a parameter of B cell activation. Clin Exp Immunol 93:195–199PubMedCrossRefGoogle Scholar
  11. 11.
    Fremeaux-Bacchi V, Kolb JP, Rakotobe S, Kazatchkine MD, Fischer EM (1999) Functional properties of soluble CD21. Immunopharmacol 42:31–37CrossRefGoogle Scholar
  12. 12.
    Fischer E, Delibrias C, Kazatchkine MD (1991) Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J Immunol 146:865–869PubMedGoogle Scholar
  13. 13.
    Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acid Sci USA 81:4510–4514CrossRefGoogle Scholar
  14. 14.
    Lowe J, Brown B, Hardie D, Richardson P, Ling N (1989) Soluble forms of CD21 and CD23 antigens in the serum in B cell chronic lymphocytic leukemia. Immunol Lett 20:103–109PubMedCrossRefGoogle Scholar
  15. 15.
    Masilamani M, Nowack R, Witte T, Schlesir M, Warnatz K, Glocker MO, Peter HH, Illges H (2004) Reduction of soluble complement receptor 2/CD21 in systemic lupus erythomatosus and Sjogren’s syndrome but not juvenile arthritis. Scand J Immunol 60:625–630PubMedCrossRefGoogle Scholar
  16. 16.
    Subcommittee for Scleroderma Criteria of the American Rheumatism Association Diagnotic, Therapeutic Criteria Committee (1980) Preliminary criteria for the classification of systemic sclerosis (scleroderma. Arthritis Rheum 23:581–590CrossRefGoogle Scholar
  17. 17.
    Steen VD, Medsger TA Jr (2000) Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum 43:2437–2444PubMedCrossRefGoogle Scholar
  18. 18.
    Masilamani M, von Kempis J, Illges H (2004) Decreased levels of serum soluble complement receptor-II (CR2/CD21) in patients with rheumatoid arthritis. Rheumatol (Oxford) 43:186–190CrossRefGoogle Scholar
  19. 19.
    Fischer EM, Mouhoub A, Maillet F et al (1999) Expression of CD21 is developmentally regulated during thymic maturation of human T lymphocytes. Int Immunol 11:1841–1849PubMedCrossRefGoogle Scholar
  20. 20.
    Okano Y (1996) Antinuclear antibody in systemic sclerosis (scleroderma). Rheum Dis Clin North Am 22:709–735PubMedCrossRefGoogle Scholar
  21. 21.
    Famularo G, Giacomelli R, Alesse E, Cifone MG, Morrone S, Boirivant M, Danese C, Perego MA, Santoni A, Tonietti G (1989) Polyclonal B lymphocyte activation in progressive systemic sclerosis. J Clin Lab Immunol 29:59–63PubMedGoogle Scholar
  22. 22.
    Whitefield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, McCalmont TH, Brown PO, Botstein D, Connolly MK (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci USA 100:12319–12324CrossRefGoogle Scholar
  23. 23.
    Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity in mice and humans. J Immunol 165:6635–6643PubMedGoogle Scholar
  24. 24.
    Sato S, Fujimoto M, Hasegawa M, Takehara K (2004) Altered blood B lymphocyte homeostasis in systemic sclerosis. Expanded naïve B cells and diminished but activated memory B cells. Arthritis Rheum 50:1918–1927PubMedCrossRefGoogle Scholar
  25. 25.
    Singh A, Blank M, Shoenfeld Y, Illges H (2008) Antiphospholipid syndrome patients display reduced titers of soluble CD21 in their sera irrespective of circulating anti-β2-glycoprotein-I autoantibodies. Rheumatol Int 28:661–665PubMedCrossRefGoogle Scholar
  26. 26.
    Masilamani M, Rajasekaran N, Singh A, Low H, Albus K, Anders S, Behne F, Eiermann P, Konig K, Mindnich C, Ribarska T, Illges H (2008) Systemic reduction of soluble complement receptor II/CD21 during pregnancy to levels reminiscent of autoimmune disease. Rheumatol Int 28:1137–1141PubMedCrossRefGoogle Scholar
  27. 27.
    Kuroda K, Shinkai H (1997) Gene expression of types I and III collagen, decorin, matrix metalloproteinases and tissue inhibitors of metalloproteinases in skin fibroblasts from patients with systemic sclerosis. Arch Dermatol Res 289:567–572PubMedCrossRefGoogle Scholar
  28. 28.
    Mattila L, Airola K, Ahonen M, Hietarinta M, Black C, Saarialho-Kere U, Kahari VM (1998) Activation of tissue inhibitor of metalloproteinase-3 (TIMP-3) mRNA expression in scleroderma skin fibroblasts. J Invest Dermatol 110:416–421PubMedCrossRefGoogle Scholar
  29. 29.
    Strehlow D, Jelaska A, Strehlow K, Korn JH (1999) A potential role for protease nexin 1 overexpression in the pathogenesis of scleroderma. J Clin Invest 103:1179–1190PubMedCrossRefGoogle Scholar
  30. 30.
    Feghali CA, Wright TM (1999) Identification of multiple, differentially expressed messenger RNAs in dermal fibroblasts from patients with systemic sclerosis. Arthritis Rheum 42:1451–1457PubMedCrossRefGoogle Scholar
  31. 31.
    Oliveira JG, Guedes ACM, Lanna CCDL, Coelho LFL, Prados RZ, Feghali C, Ferreira PCP, Erna Kroon G (2002) Protease nexin-1 messenger RNA levels are not affected by serum or interferon beta in cultured systemic sclerosis fibroblasts. Arch Dermatol Res 293:584–589PubMedGoogle Scholar
  32. 32.
    Dowd PM, Kiirby JD, Holborow EJ, Cooke ED, Bowcock SA (1981) Detection of immune complexes in systemic sclerosis and Raynaud’s phenomenon. Br J Dermatol 105:179–188PubMedCrossRefGoogle Scholar
  33. 33.
    Seibold JR, Medsger TA Jr, Alan Winkelstein A, Kelly RH, Rodnan GP (2005) Immune complexes in progressive systemic sclerosis (scleroderma). Arthritis Rheum 25:1167–1173CrossRefGoogle Scholar
  34. 34.
    French MAH, Harrison G, Penning CA, Cunningham J, Hughes P, Rowell NR (1985) Serum immune complexes in systemic sclerosis: relationship with precipitating nuclear antibodies. Ann Rheum Dis 44:89–92PubMedCrossRefGoogle Scholar
  35. 35.
    Xiang Y, Matsui T, Matsuo K, Shimada K, Tohma S, Nakamura H, Masuko K, Yudoh K, Nishioka K, Kato T (2007) Comprehensive investigation of disease-specific short peptides in sera from patients with systemic sclerosis. Arthritis Rheum 56:2018–2030PubMedCrossRefGoogle Scholar
  36. 36.
    McCoy RC, Tisher CC, Pepe PF, Cleveland LA (1976) The kidney in progressive systemic sclerosis: immunohistochemical and antibody elution studies. Lab Invest 35:124–132PubMedGoogle Scholar
  37. 37.
    Seibold JR, Medsger TA Jr, Winkelstein A, Kelly RH, Rodnan GP (1982) Immune complexes in progressive systemic sclerosis (scleroderma). Arthritis Rheum 25:1167–1174PubMedCrossRefGoogle Scholar
  38. 38.
    von Bierbrauer AFG, Mennel HD, Schmidt JA, von Wichert P (1996) Intravital microscopy and capillaroscopically guided nail fold biopsy in scleroderma. Ann Rheum Dis 55:305–310CrossRefGoogle Scholar
  39. 39.
    Senaldi G, Lupoli S, Vergani D, Black CM (1989) Activation of the complement system in systemic sclerosis. Relationship to clinical severity. Arthritis Rheum 32:1262–1267PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Manabu Tomita
    • 1
  • Takafumi Kadono
    • 1
  • Norihito Yazawa
    • 1
  • Tomohiko Kawashima
    • 1
  • Zenshiro Tamaki
    • 1
  • Ryuichi Ashida
    • 1
  • Hanako Ohmatsu
    • 1
  • Yoshihide Asano
    • 1
  • Makoto Sugaya
    • 1
  • Masahide Kubo
    • 1
  • Hironobu Ihn
    • 2
  • Kunihiko Tamaki
    • 1
  • Shinichi Sato
    • 1
  1. 1.Department of Dermatology, Faculty of MedicineUniversity of TokyoBunkyo-kuJapan
  2. 2.Department of Dermatology and Plastic SurgeryGraduate School of Medical and Pharmaceutical Sciences, Kumamoto UniversityKumamotoJapan

Personalised recommendations