Advertisement

Rheumatology International

, Volume 31, Issue 4, pp 549–554 | Cite as

Surveillance of systemic autoimmune rheumatic diseases using administrative data

  • S. BernatskyEmail author
  • L. Lix
  • J. G. Hanly
  • M. Hudson
  • E. Badley
  • C. Peschken
  • C. A. Pineau
  • A. E. Clarke
  • P. R. Fortin
  • M. Smith
  • P. Bélisle
  • C. Lagace
  • L. Bergeron
  • L. Joseph
Short Communication

Abstract

There is growing interest in developing tools and methods for the surveillance of chronic rheumatic diseases, using existing resources such as administrative health databases. To illustrate how this might work, we used population-based administrative data to estimate and compare the prevalence of systemic autoimmune rheumatic diseases (SARDs) across three Canadian provinces, assessing for regional differences and the effects of demographic factors. Cases of SARDs (systemic lupus erythematosus, scleroderma, primary Sjogren’s, polymyositis/dermatomyositis) were ascertained from provincial physician billing and hospitalization data. We combined information from three case definitions, using hierarchical Bayesian latent class regression models that account for the imperfect nature of each case definition. Using methods that account for the imperfect nature of both billing and hospitalization databases, we estimated the over-all prevalence of SARDs to be approximately 2–3 cases per 1,000 residents. Stratified prevalence estimates suggested similar demographic trends across provinces (i.e. greater prevalence in females-versus-males, and in persons of older age). The prevalence in older females approached or exceeded 1 in 100, which may reflect the high burden of primary Sjogren’s syndrome in this group. Adjusting for demographics, there was a greater prevalence in urban-versus-rural settings. In our work, prevalence estimates had good face validity and provided useful information about potential regional and demographic variations. Our results suggest that surveillance of some rheumatic diseases using administrative data may indeed be feasible. Our work highlights the usefulness of using multiple data sources, adjusting for the error in each.

Keywords

Systemic autoimmune rheumatic diseases Surveillance Administrative databases Prevalence 

Notes

Acknowledgments

This study was funded by the Canadian Institutes of Health Research (CIHR). Dr. Sasha Bernatsky is a Canadian Arthritis Network Scholar and is supported by the CIHR, the Fonds de la Recherche en Santé du Québec (FRSQ) and the McGill University Health Centre (MUHC) Research Institute and Department of Medicine. Dr. Christian Pineau is supported by the MUHC Research Institute and Department of Medicine. Drs. Ann Clarke and Lawrence Joseph are FRSQ National Scholars. Dr. Marie Hudson holds a Junior Investigator CIHR career award. The authors are indebted to Manitoba Health and Healthy Living for the provision of data. The results and conclusions are those of the authors, and no official endorsement by Manitoba Health and Healthy Living is intended or should be inferred.

References

  1. 1.
    The Arthritis Society. Highlights from the first ever Canadian consensus conference on Systemic Autoimmune Rheumatic Diseases (SARD) Dec 20, 2007. Available at: http://www.arthritis.ca/look%20at%20research/sard/default.asp?s=1. Accessed 16 May 2009
  2. 2.
    Hanly JG (2001) Manpower in Canadian academic rheumatology units: current status and future trends. Canadian Council of Academic Rheumatologists. Rheumatol 28:1944–1951Google Scholar
  3. 3.
    Callaghan R, Prabu A, Allan RB et al (2007) Direct healthcare costs and predictors of costs in patients with primary Sjogren’s syndrome. Rheumatology 46:105–111PubMedCrossRefGoogle Scholar
  4. 4.
    Sutcliffe N, Clarke AE, Taylor R et al (2001) Total costs and predictors of costs in patients with systemic lupus erythematosus. Rheumatology (Oxford) 40:37–47CrossRefGoogle Scholar
  5. 5.
    Bernatsky S, Hudson M, Panopalis P et al (2009) The cost of systemic sclerosis. Arthritis Rheum 61:119–123PubMedGoogle Scholar
  6. 6.
    Clarke AE, Panopalis P, Petri M et al (2008) SLE patients with renal damage incur higher health care costs. Rheumatology (Oxford) 47:329–333CrossRefGoogle Scholar
  7. 7.
    Panopalis P, Petri M, Manzi S et al (2007) The systemic lupus erythematosus Tri-Nation study: cumulative indirect costs. Arthritis Rheum 57:64–70PubMedCrossRefGoogle Scholar
  8. 8.
    Wilchesky M, Tamblyn RM, Huang A (2004) Validation of diagnostic codes within medical services claims. J Clin Epidemiol 57:131–141PubMedCrossRefGoogle Scholar
  9. 9.
    Bernatsky S, Joseph L, Pineau CA et al (2008) Estimating the prevalence of polymyositis and dermatomyositis from administrative data: age, sex, and regional differences. Ann Rheum Dis 68:1192–1196PubMedCrossRefGoogle Scholar
  10. 10.
    Joseph L, Gyorkos T, Coupal L (1995) Bayesian estimation of disease prevalence and the prevalence of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141:263–272PubMedGoogle Scholar
  11. 11.
    Ashby D (2006) Bayesian statistics in medicine: a 25 year review. Stat Med 25:3589–3631PubMedCrossRefGoogle Scholar
  12. 12.
    Dendukuri N, Joseph L (2001) Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics 57:158–167PubMedCrossRefGoogle Scholar
  13. 13.
    Losina E, Barrett J, Baron JA et al (2003) Accuracy of Medicare claims data for rheumatologic diagnoses in total hip replacement recipients. J Clin Epidemiol 56:515–519PubMedCrossRefGoogle Scholar
  14. 14.
    Bernatsky S, Joseph L, Pineau CA et al (2007) A population-based assessment of systemic lupus erythematosus incidence and prevalence–results and implications of using administrative data for epidemiological studies. Rheumatology (Oxford) 46:1814–1818CrossRefGoogle Scholar
  15. 15.
    Bernatsky S, Joseph L, Belisle P et al (2005) Bayesian modelling of imperfect ascertainment methods in cancer studies. Stat Med 24:2365–2379PubMedCrossRefGoogle Scholar
  16. 16.
    Ladouceur M, Rahme E, Pineau CA et al (2007) Robustness of prevalence estimates derived from misclassified data from administrative databases. Biometrics 63:272–279PubMedCrossRefGoogle Scholar
  17. 17.
    Statistics Canada. Geographic Units: Census Metropolitan Area (CMA) and Census Agglomeration (CA) December 17, 2002. Available at: http://www12.statcan.ca/english/census01/Products/Reference/dict/geo009.htm. Accessed 16 May 2009
  18. 18.
    Vacek PM (1985) The effect of conditional dependence on the evaluation of diagnostic tests. Biometrics 41:959–968PubMedCrossRefGoogle Scholar
  19. 19.
    Helmick CG, Felson DT, Lawrence RC et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 58:15–25PubMedCrossRefGoogle Scholar
  20. 20.
    Kabasakal Y, Kitapcioglu G, Turk T et al (2006) The prevalence of Sjogren’s syndrome in adult women. Scand J Rheumatol 35:379–383PubMedCrossRefGoogle Scholar
  21. 21.
    Bernstein CN, Wajda A, Svenson LW et al (2006) The epidemiology of inflammatory bowel disease in Canada: a population-based study. Am J Gastroenterol 101:1559–1568PubMedCrossRefGoogle Scholar
  22. 22.
    Rourke J (2007) In search of a definition of “rural”. Can J Rural Med 2:113–115Google Scholar
  23. 23.
    Lix LM, Yogendran MS, Leslie WD et al (2008) Using multiple data features improved the validity of osteoporosis case ascertainment from administrative databases. J Clin Epidemiol 61:1250–1260PubMedCrossRefGoogle Scholar
  24. 24.
    Prosser RJ, Carleton BC, Smith MA (2008) Identifying persons with treated asthma using administrative data via latent class modelling. Health Serv Res 43:733–754PubMedCrossRefGoogle Scholar
  25. 25.
    Statistical information on Canadian physicians 2009. Available at: http://www.cma.ca/index.cfm/ci_id/16959/la_id/1.htm
  26. 26.
    Yiannakoulias N, Svenson LW, Schopflocher DP (2009) An integrated framework for the geographic surveillance of chronic disease. Int J Health Geogr 8:69PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Bernatsky
    • 1
    • 2
    Email author
  • L. Lix
    • 3
  • J. G. Hanly
    • 4
  • M. Hudson
    • 5
  • E. Badley
    • 6
  • C. Peschken
    • 7
  • C. A. Pineau
    • 2
  • A. E. Clarke
    • 1
    • 8
  • P. R. Fortin
    • 9
  • M. Smith
    • 10
  • P. Bélisle
    • 1
  • C. Lagace
    • 11
  • L. Bergeron
    • 12
  • L. Joseph
    • 1
    • 13
  1. 1.Division of Clinical EpidemiologyResearch Institute of the McGill University Health Centre (MUHC)MontrealCanada
  2. 2.Division of RheumatologyMUHCMontrealCanada
  3. 3.School of Public HealthUniversity of SaskatchewanSaskatoonCanada
  4. 4.Division of Rheumatology, Department of Medicine and Department of PathologyDalhousie University and Queen Elizabeth II Health Sciences CentreHalifaxCanada
  5. 5.Division of RheumatologyJewish General HospitalMontrealCanada
  6. 6.Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
  7. 7.Department of MedicineUniversity of ManitobaWinnipegCanada
  8. 8.Division of Clinical Immunology and AllergyMUHCMontrealCanada
  9. 9.Toronto Western HospitalUniversity Health Network, and University of TorontoTorontoCanada
  10. 10.Manitoba Centre for Health PolicyUniversity of ManitobaWinnipegCanada
  11. 11.Public Health Agency of CanadaOttawaCanada
  12. 12.Canadian Arthritis Patient AllianceTorontoCanada
  13. 13.Department of Epidemiology, Biostatistics & Occupational HealthMcGill UniversityMontrealCanada

Personalised recommendations