Rheumatology International

, Volume 31, Issue 11, pp 1451–1458 | Cite as

HMG-CoA reductase inhibitor simvastatin suppresses Toll-like receptor 2 ligand-induced activation of nuclear factor kappa B by preventing RhoA activation in monocytes from rheumatoid arthritis patients

  • Haobo Lin
  • Youjun Xiao
  • Guoqiang Chen
  • Di Fu
  • Yujin Ye
  • Liuqin Liang
  • Jinjin Fan
  • Xiuyan Yang
  • Lin Sun
  • Hanshi Xu
Original Article

Abstract

To investigate whether anti-inflammatory effects of HMG-CoA reductase inhibitor simvastatin (SMV) in rheumatoid arthritis (RA) is mediated by Toll-like receptor-2 (TLR-2) signal via inhibiting activation of RhoA, a small Rho GTPase that plays an important role in inflammatory responses. Peripheral blood monocytes from active RA patients were treated with Staphylococcus aureus peptidoglycan (PG), a ligand of TLR-2, in the presence or absence of SMV. RhoA activity was assessed by a pull-down assay. DNA-binding activity was measured by a sensitive multi-well colorimetric assay. Cytokine secretion was measured by ELISA. PG stimulation increased the level of active GTP-bound RhoA compared with unstimulated monocytes, and the effect of PG on RhoA activity was suppressed with anti-TLR-2 monoclonal antibody. RhoA inhibition either with a specific inhibitor or by siRNA transfection inhibited activation of NF-κB and secretion of TNFα and IL-1β in PG-induced RA monocytes. SMV mitigated PG-induced increase in RhoA activity and NF-κB activation as well as secretion of TNFα and IL-1β. The inhibitory effects of SMV were completely reversed by mevalonate and geranylgeranyl pyrophosphate. Our results indicate the modulation of RhoA on TLR-2-mediated inflammatory signaling in RA and provide a novel evidence for anti-inflammatory effects of statins through influencing TLR-2 signaling via RhoA in RA.

Keywords

Statin Rho Toll-like receptor Inflammation Rheumatoid arthritis 

Notes

Acknowledgments

This work is supported in part by grants from National Natural Science Foundation of China (No. u0772001), Guangdong Natural Science Foundation (No. 07001643) and Excellent Talent Program of the First Hospital, Sun Yat-sen University, China.

Conflict of interest statement

None.

References

  1. 1.
    Szekanecz Z, Koch AE (2007) Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol 19:289–295PubMedCrossRefGoogle Scholar
  2. 2.
    Burmester GR, Stuhlműller B, Keyszer G, Kinne RW (1997) Mononuclear phagocytes and rheumatoid synovitis: mastermind or workhorse? Arthritis Rheum 40:5–18PubMedCrossRefGoogle Scholar
  3. 3.
    Andreakos E, Sacre S, Foxwell BM, Feldmann M (2005) The toll-like receptor-nuclear factor κB pathway in rheumatoid arthritis. Front Biosci 10:2478–2488PubMedCrossRefGoogle Scholar
  4. 4.
    Brentano F, Kyburz D, Schorr O, Gay R, Gay S (2005) The role of Toll-like receptor signaling in the pathogenesis of arthritis. Cell Immunol 233:90–96PubMedCrossRefGoogle Scholar
  5. 5.
    Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13:85–94PubMedCrossRefGoogle Scholar
  6. 6.
    Iwahashi M, Yamamura M, Aita T, Okamato A, Ueno A, Ogawa N et al (2004) Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 50:1457–1467PubMedCrossRefGoogle Scholar
  7. 7.
    Huang Q, Ma Y, Adedamola A, Pope RM (2007) Increased macrophage activation mediated through Toll-like receptors in rheumatoid arthritis. Arthritis Rheum 56:2192–2201PubMedCrossRefGoogle Scholar
  8. 8.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–633PubMedCrossRefGoogle Scholar
  9. 9.
    Han ZN, Boyle DL, Manning AM, Firestein GS (1998) AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28:197–208PubMedCrossRefGoogle Scholar
  10. 10.
    Handel ML, McMorrow LB, Gravallese EM (1995) Nuclear factor κB in rheumatoid synovium: localization of p50 and p65. Arthritis Rheum 38:1762–1770PubMedCrossRefGoogle Scholar
  11. 11.
    Seetharaman R, Mora AL, Nabozny G, Boothby M, Chen J (1999) Essential role of T cell NF-kappaB activation in collagen-induced arthritis. J Immunol 163:1577–1583PubMedGoogle Scholar
  12. 12.
    Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimplson SA et al (1998) NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95:13859–13864PubMedCrossRefGoogle Scholar
  13. 13.
    Tak PP, Gerlag DM, Aupperle KR, van de Geest DA, Overbeek M, Bennett BL et al (2001) Inhibitor of nuclear factor κB is a key regulator of synovial inflammation. Arthritis Rheum 44:1897–1907PubMedCrossRefGoogle Scholar
  14. 14.
    Hammaker D, Sweeney S, Firestein GS (2003) Signal transduction networks in rheumatoid arthritis. Ann Rheum Dis 62:1186–1189CrossRefGoogle Scholar
  15. 15.
    Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179PubMedCrossRefGoogle Scholar
  16. 16.
    Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10PubMedCrossRefGoogle Scholar
  17. 17.
    Tharaux PL, Bukoski RC, Rocha PN, Crowley SD, Ruiz P, Nataraj C et al (2003) Rho kinase promotes alloimmune responses by regulating the proliferation and structure of T cells. J Immunol 171:96–105PubMedGoogle Scholar
  18. 18.
    Lee JR, Ha YJ, Kim HJ (2003) Cutting edge: induced expression of a RhoA-specific guanine nucleotide exchange factor, p190RhoGEF, following CD40 stimulation and WEHI 231 B cell activation. J Immunol 170:19–23PubMedGoogle Scholar
  19. 19.
    Perona R, Montaner S, Sangier L, Sanchez-Perez L, Bravo R, Lacal K (1997) Activation of the nuclear factor-kappa B by Rho, Cdc42, and Rac proteins. Genes Dev 11:463–475PubMedCrossRefGoogle Scholar
  20. 20.
    Xu H, Liu P, Liang L, Danesh FR, Yang Y, Ye Y et al (2006) RhoA-mediated, tumor necrosis factor α-induced activation of NF-κB in rheumatoid synoviocytes: inhibitory effect of simvastatin. Arthritis Rheum 54:3441–3451PubMedCrossRefGoogle Scholar
  21. 21.
    Nakayamada S, Kurose H, Saito K, Mogami A, Tanaka Y (2005) Small GTP-binding protein Rho-mediated signaling promotes proliferation of rheumatoid synovial fibroblasts. Arthritis Res Ther 7:R476–R484PubMedCrossRefGoogle Scholar
  22. 22.
    SchÖnbeck U, Libby P (2004) Inflammation, immunity, and HMG-CoA reductase inhibitors statins as anti-inflammatory agents? Circulation 109 (Suppl II): II–18–26Google Scholar
  23. 23.
    Ghittoni R, Lazzerini PE, Pasini FL, Baldari CT (2006) T lymphocytes as targets of statins: molecular mechanisms and therapeutic perspectives. Inflamm Allergy-Drug Targets 6:3–16CrossRefGoogle Scholar
  24. 24.
    Abud-Mendoza C, de la Fuente H, Cuevas-Orta E, Baranda L, Cruz-Rizo J, Gonzalez-Amaro R (2003) Therapy with statins in patients with refractory rheumatic diseases: a preliminary study. Lupus 12:607–611PubMedCrossRefGoogle Scholar
  25. 25.
    McCarey DW, McInnes IB, Madhok R, Hampson R, Scherbakov O, Ford I et al (2004) Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet 363:2015–2021PubMedCrossRefGoogle Scholar
  26. 26.
    Tikiz C, Utuk O, Pirildar T, Bayturan O, Bayindir P, Taneli F et al (2005) Effects of Angiotensin-converting enzyme inhibition and statin treatment on inflammatory markers and endothelial functions in patients with long term rheumatoid arthritis. J Rheumatol 32:2095–2110PubMedGoogle Scholar
  27. 27.
    Leung BP, Sattar N, Crilly A, Prach M, McCarey DW, Payne H et al (2003) A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J Immunol 170:1524–1530PubMedGoogle Scholar
  28. 28.
    Barsante MM, Roffe E, Yokoro CM, Tafuri WL, Souza DG, Pinho V et al (2005) Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur J Pharmacol 516:282–289PubMedCrossRefGoogle Scholar
  29. 29.
    Casey PJ (1995) Protein lipidation in cell signaling. Science 268:221–225PubMedCrossRefGoogle Scholar
  30. 30.
    Goldstein JL, Brown MS (1990) Regulation of mevalonate pathway. Nature 343:425–430PubMedCrossRefGoogle Scholar
  31. 31.
    Scita G, Tenca P, Frittoli E (2000) Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J 19:2393–2398PubMedCrossRefGoogle Scholar
  32. 32.
    Danesh FR, Sadeghi MM, Amro N, Philips C, Zeng L, Sahai A et al (2002) 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors prevent high glucose induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: implications for diabetic nephropathy. Proc Natl Acad Sci USA 99:8301–8305PubMedCrossRefGoogle Scholar
  33. 33.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324PubMedCrossRefGoogle Scholar
  34. 34.
    Xu H, He Y, Yang Y, Liang L, Zhan Z, Ye Y et al (2007) Anti-malarial agent artesunate inhibits TNF-α-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 46:920–926PubMedCrossRefGoogle Scholar
  35. 35.
    Renard P, Ernest I, Houbion A, Art M, Le Calvez H, Raes M et al (2001) Development of a sensitive multi-well colorimetric assay for active NF-kappaB. Nucl Acid Res 29:E21 nar.oxfordjournals.orgCrossRefGoogle Scholar
  36. 36.
    Teusch N, Lombardo E, Eddleston J, Knaus UG (2004) The low molecular weight GTPase RhoA and atypical protein kinase Cζ are required for TLR2-mediated gene transcription. J Immunol 173:507–514PubMedGoogle Scholar
  37. 37.
    Manukyan M, Nalbant P, Luxen S, Hahn KM, Knaus UG (2009) RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-kappa B. J Immunol 182:3522–3529PubMedCrossRefGoogle Scholar
  38. 38.
    Nagashima T, Okazaki H, Yudoh K, Matsuno H, Minota S (2006) Apoptosis of rheumatoid synovial cells by statins through the blocking of protein geranylgeranylation: a potential therapeutic approach to rheumatoid arthritis. Arthritis Rheum 54:579–586PubMedCrossRefGoogle Scholar
  39. 39.
    Methe H, Kim JO, Kofler S, Nabauer M, Weis M (2005) Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14 + monocytes. Arterioscler Thromb Vasc Biol 25:1439–1445PubMedCrossRefGoogle Scholar
  40. 40.
    Blanco-Colio ML, Tuňón J, Martín-Ventura JL, Egido J (2003) Anti-inflammatory and immunomodulatory effects of statins. Kidney Int 63:12–23PubMedCrossRefGoogle Scholar
  41. 41.
    Van Aelst L, D’souza-Schorey C (1997) Rho GTPase and signaling networks. Genes Dev 11:2295–2322PubMedCrossRefGoogle Scholar
  42. 42.
    Xu H, Zeng L, Hui P, Chen S, Jones J, Chew TL et al (2006) HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced “inside-out” signaling to extracellular matrix by preventing RhoA activation. Am J Physiol Renal Physiol 291:F995–F1004PubMedCrossRefGoogle Scholar
  43. 43.
    Zeng L, Xu H, Chew T-L, Chisholm R, Sadeghi MM, Kanwar YS et al (2004) Simvastatin modulates angiotensin II signaling pathway by preventing Rac-1-mediated upregulation of p27. J Am Soc Nephrol 15:1711–1720PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Haobo Lin
    • 1
  • Youjun Xiao
    • 1
  • Guoqiang Chen
    • 2
  • Di Fu
    • 1
  • Yujin Ye
    • 1
  • Liuqin Liang
    • 1
  • Jinjin Fan
    • 3
  • Xiuyan Yang
    • 1
  • Lin Sun
    • 4
  • Hanshi Xu
    • 1
  1. 1.Department of Rheumatology, The First Affiliated HospitalSun Yat-sen UniversityGuangzhou, GuangdongPeople’s Republic of China
  2. 2.Department of RheumatologyFushan Hospital of Sun Yat-sen UniversityFushan, GuangdongPeople’s Republic of China
  3. 3.Department of Nephrology, The First Affiliated HospitalSun Yat-sen UniversityGuangzhou, GuangdongPeople’s Republic of China
  4. 4.Department of Pathology, School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations