Rheumatology International

, Volume 30, Issue 5, pp 571–586 | Cite as

Complementary and alternative medicine use in rheumatoid arthritis: proposed mechanism of action and efficacy of commonly used modalities

  • Petros Efthimiou
  • Manil Kukar


Complementary and alternative medicine (CAM) has become popular in patients with Rheumatoid arthritis (RA) worldwide. The objective of this study is to systematically review the proposed mechanisms of action and currently available evidence supporting the efficacy of CAM modalities in relieving signs and symptoms of RA. The prevalence of CAM usage by RA patients is anywhere from 28% to 90%. Many published studies on CAM are based on animal models of RA and there is often insufficient evidence for the efficacy of CAM modalities in RA. The existing evidence suggests that some of the CAM modalities, such as acupuncture, herbal medicines, dietary omega-3 fatty acids, vitamins, and pulsed electromagnetic field show promising efficacy in reducing pain. While the use of CAM modalities for the treatment of RA continues to increase, rigorous clinical trials examining their efficacy are necessary to validate or refute the clinical claims made for CAM therapies.


Complementary and alternative medicine (CAM) Alternative medicine Herbal remedies Rheumatoid arthritis 



Adjuvant arthritis


Mycobacterial heat shock protein 65


Bee venom acupuncture


Complementary and alternative medicine




Collagen induced arthritis


Docosahexaenoic acid


Electro acupuncture




Eicosapentaenoic acid


Glutathione peroxidase




Interferon gamma


Insulin like growth factor-1


Interleukin 1 beta


Interleukin 6


Inducible Nitric oxide synthase








Matrix metalloproteinase




Nuclear factor kappa B


Nitric oxide


Polyunsaturated fatty acid


Rheumatoid arthritis


Reverse transcriptase polymerize chain reaction


Superoxide dismutase


Traditional Chinese acupuncture


Tumor necrosis factor alpha


Tripterygium wilfordii Hook


Vascular endothelial growth factor


Conflict of interest statement

The authors have no conflicts of interest.


  1. 1.
    Barnes PM et al (2004) Complementary and alternative medicine use among adults: United States, 2002. Adv Data 343:1–19PubMedGoogle Scholar
  2. 2.
    Brune K (2004) Safety of anti-inflammatory treatment—new ways of thinking. Rheumatology (Oxford) 43(Suppl 1):i16–i20Google Scholar
  3. 3.
    Soeken KL, Miller SA, Ernst E (2003) Herbal medicines for the treatment of rheumatoid arthritis: a systematic review. Rheumatology (Oxford) 42(5):652–659Google Scholar
  4. 4.
    Astin JA (1999) Use of alternative medicine by women with breast cancer. N Engl J Med 341(15):1156 Author reply 1156–1157PubMedGoogle Scholar
  5. 5.
    Lawrence RC et al (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41(5):778–799PubMedGoogle Scholar
  6. 6.
    Chikanza IC et al (1998) Why do we need new treatments for rheumatoid arthritis? J Pharm Pharmacol 50(4):357–369PubMedGoogle Scholar
  7. 7.
    Taibi DM, Bourguignon C (2003) The role of complementary and alternative therapies in managing rheumatoid arthritis. Fam Community Health 26(1):41–52PubMedGoogle Scholar
  8. 8.
    Soeken KL (2004) Selected CAM therapies for arthritis-related pain: the evidence from systematic reviews. Clin J Pain 20(1):13–18PubMedGoogle Scholar
  9. 9.
    Rosted P, Warnakulasuriya S (2005) A survey on the uses of acupuncture by a group of UK dentists. Br Dent J 198(3):139–143PubMedGoogle Scholar
  10. 10.
    Vickers A, Zollman C (1999) ABC of complementary medicine. Acupuncture. BMJ 319(7215):973–976PubMedGoogle Scholar
  11. 11.
    Lao L (1996) Acupuncture techniques and devices. J Altern Complement Med 2(1):23–25PubMedGoogle Scholar
  12. 12.
    Zanette Sde A et al (2008) A pilot study of acupuncture as adjunctive treatment of rheumatoid arthritis. Clin Rheumatol 27(5):627–635PubMedGoogle Scholar
  13. 13.
    Tam LS et al (2007) Acupuncture in the treatment of rheumatoid arthritis: a double-blind controlled pilot study. BMC Complement Altern Med 7:35PubMedGoogle Scholar
  14. 14.
    Yim YK et al (2007) Electro-acupuncture at acupoint ST36 reduces inflammation and regulates immune activity in collagen-induced arthritic mice. Evid Based Complement Alternat Med 4(1):51–57PubMedGoogle Scholar
  15. 15.
    Holmdahl R et al (1990) Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol Rev 118:193–232PubMedGoogle Scholar
  16. 16.
    Weyand CM, Fulbright JW, Goronzy JJ (2003) Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol 38(8):833–841PubMedGoogle Scholar
  17. 17.
    Choy EH et al (2002) Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46(12):3143–3150PubMedGoogle Scholar
  18. 18.
    Elliott MJ et al (1993) Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 36(12):1681–1690PubMedGoogle Scholar
  19. 19.
    Miossec P (2004) An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol 16(3):218–222PubMedGoogle Scholar
  20. 20.
    Cook AD et al (2004) Antibodies against the CB10 fragment of type II collagen in rheumatoid arthritis. Arthritis Res Ther 6(5):R477–R483PubMedGoogle Scholar
  21. 21.
    Panayi GS, Corrigall VM, Pitzalis C (2001) Pathogenesis of rheumatoid arthritis. The role of T cells and other beasts. Rheum Dis Clin North Am 27(2):317–334PubMedGoogle Scholar
  22. 22.
    Silverman GJ, Carson DA (2003) Roles of B cells in rheumatoid arthritis. Arthritis Res Ther 5(Suppl 4):S1–S6PubMedGoogle Scholar
  23. 23.
    Dorner T, Burmester GR (2003) The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets. Curr Opin Rheumatol 15(3):246–252PubMedGoogle Scholar
  24. 24.
    Lee DM, Weinblatt ME (2001) Rheumatoid arthritis. Lancet 358(9285):903–911PubMedGoogle Scholar
  25. 25.
    Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361PubMedGoogle Scholar
  26. 26.
    David J et al (1999) The effect of acupuncture on patients with rheumatoid arthritis: a randomized, placebo-controlled cross-over study. Rheumatology (Oxford) 38(9):864–869Google Scholar
  27. 27.
    Lee JD et al (2005) An overview of bee venom acupuncture in the treatment of arthritis. Evid Based Complement Alternat Med 2(1):79–84PubMedGoogle Scholar
  28. 28.
    Kwon YB et al (2001) Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 90(3):271–280PubMedGoogle Scholar
  29. 29.
    Borchers AT et al (2000) Inflammation and native american medicine: the role of botanicals. Am J Clin Nutr 72(2):339–347PubMedGoogle Scholar
  30. 30.
    Marok R et al (1996) Activation of the transcription factor nuclear factor-kappaB in human inflamed synovial tissue. Arthritis Rheum 39(4):583–591PubMedGoogle Scholar
  31. 31.
    Winyard PG, Blake DR (1997) Antioxidants, redox-regulated transcription factors, and inflammation. Adv Pharmacol 38:403–421PubMedGoogle Scholar
  32. 32.
    Mix KS et al (2001) A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum 44(5):1096–1104PubMedGoogle Scholar
  33. 33.
    Siddiqui IA et al (2004) Antioxidants of the beverage tea in promotion of human health. Antioxid Redox Signal 6(3):571–582PubMedGoogle Scholar
  34. 34.
    Curtis CL et al (2004) Biological basis for the benefit of nutraceutical supplementation in arthritis. Drug Discov Today 9(4):165–172PubMedGoogle Scholar
  35. 35.
    Singh R et al (2002) Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. Arthritis Rheum 46(8):2079–2086PubMedGoogle Scholar
  36. 36.
    Ahmed S et al (2002) Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic Biol Med 33(8):1097–1105PubMedGoogle Scholar
  37. 37.
    Singh R et al (2003) Epigallocatechin-3-gallate selectively inhibits interleukin-1beta-induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes. J Orthop Res 21(1):102–109PubMedGoogle Scholar
  38. 38.
    Vincenti MP, Brinckerhoff CE (2001) The potential of signal transduction inhibitors for the treatment of arthritis: is it all just JNK? J Clin Invest 108(2):181–183PubMedGoogle Scholar
  39. 39.
    Ahmed S et al (2004) Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1 beta-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther 308(2):767–773PubMedGoogle Scholar
  40. 40.
    Adcocks C, Collin P, Buttle DJ (2002) Catechins from green tea (Camellia sinensis) inhibit bovine and human cartilage proteoglycan and type II collagen degradation in vitro. J Nutr 132(3):341–346PubMedGoogle Scholar
  41. 41.
    Vankemmelbeke MN et al (2003) Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters. Eur J Biochem 270(11):2394–2403PubMedGoogle Scholar
  42. 42.
    Haqqi TM et al (1999) Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci USA 96(8):4524–4529PubMedGoogle Scholar
  43. 43.
    Spivey AC, Weston M, Woodhead S (2002) Celastraceae sesquiterpenoids: biological activity and synthesis. Chem Soc Rev 31(1):43–59PubMedGoogle Scholar
  44. 44.
    Guo YQ et al (2004) Sesquiterpene esters from the fruits of Celastrus orbiculatus. Chem Pharm Bull (Tokyo) 52(9):1134–1136Google Scholar
  45. 45.
    Jin HZ et al (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65(1):89–91PubMedGoogle Scholar
  46. 46.
    Min KR et al (1999) (−)−Epiafzelechin: cyclooxygenase-1 inhibitor and anti-inflammatory agent from aerial parts of Celastrus orbiculatus. Planta Med 65(5):460–462PubMedGoogle Scholar
  47. 47.
    Westerheide SD et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56053–56060PubMedGoogle Scholar
  48. 48.
    Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6(8):945–951PubMedGoogle Scholar
  49. 49.
    Appleton I, Tomlinson A, Willoughby DA (1996) Induction of cyclo-oxygenase and nitric oxide synthase in inflammation. Adv Pharmacol 35:27–78PubMedGoogle Scholar
  50. 50.
    Tong L, Moudgil KD (2007) Celastrus aculeatus Merr. suppresses the induction and progression of autoimmune arthritis by modulating immune response to heat-shock protein 65. Arthritis Res Ther 9(4):R70PubMedGoogle Scholar
  51. 51.
    Ulmansky R et al (2002) Resistance to adjuvant arthritis is due to protective antibodies against heat shock protein surface epitopes and the induction of IL-10 secretion. J Immunol 168(12):6463–6469PubMedGoogle Scholar
  52. 52.
    Kim HR et al (2006) Antibody responses to mycobacterial and self heat shock protein 65 in autoimmune arthritis: epitope specificity and implication in pathogenesis. J Immunol 177(10):6634–6641PubMedGoogle Scholar
  53. 53.
    Williams JE (2001) Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on Una de Gato and Sangre de Grado. Altern Med Rev 6(6):567–579PubMedGoogle Scholar
  54. 54.
    Sandoval-Chacon M et al (1998) Antiinflammatory actions of cat’s claw: the role of NF-kappaB. Aliment Pharmacol Ther 12(12):1279–1289PubMedGoogle Scholar
  55. 55.
    Sandoval M et al (2002) Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 9(4):325–337PubMedGoogle Scholar
  56. 56.
    Miller MJ et al (2001) Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis. BMC Complement Altern Med 1:11PubMedGoogle Scholar
  57. 57.
    Sandoval M et al (2000) Cat’s claw inhibits TNFalpha production and scavenges free radicals: role in cytoprotection. Free Radic Biol Med 29(1):71–78PubMedGoogle Scholar
  58. 58.
    Muhammad I (2001) Investigation of Una De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa. Phytochemistry 57(5):781–785PubMedGoogle Scholar
  59. 59.
    Mur E et al (2002) Randomized double blind trial of an extract from the pentacyclic alkaloid-chemotype of Uncaria tomentosa for the treatment of rheumatoid arthritis. J Rheumatol 29(4):678–681PubMedGoogle Scholar
  60. 60.
    Piscoya J et al (2001) Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanisms of action of the species Uncaria guianensis. Inflamm Res 50(9):442–448PubMedGoogle Scholar
  61. 61.
    Santa Maria A et al (1997) Evaluation of the toxicity of Uncaria tomentosa by bioassays in vitro. J Ethnopharmacol 57(3):183–187PubMedGoogle Scholar
  62. 62.
    Gonzales GF et al (2003) Effect of Lepidium meyenii (Maca), a root with aphrodisiac and fertility-enhancing properties, on serum reproductive hormone levels in adult healthy men. J Endocrinol 176(1):163–168PubMedGoogle Scholar
  63. 63.
    Gonzales GF et al (2002) Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia 34(6):367–372PubMedGoogle Scholar
  64. 64.
    Gonzales GF et al (2001) Lepidium meyenii (Maca) improved semen parameters in adult men. Asian J Androl 3(4):301–303PubMedGoogle Scholar
  65. 65.
    Miller MJ et al (2006) The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1beta. BMC Complement Altern Med 6:13PubMedGoogle Scholar
  66. 66.
    Fernandez-Celemin L et al (2002) Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab 283(6):E1279–E1290PubMedGoogle Scholar
  67. 67.
    De Benedetti F et al (2001) Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 142(11):4818–4826PubMedGoogle Scholar
  68. 68.
    Tao X, Lipsky PE (2000) The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum Dis Clin North Am 26(1):29–50PubMedGoogle Scholar
  69. 69.
    Qiu D, Kao PN (2003) Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook f. Drugs R D 4(1):1–18PubMedGoogle Scholar
  70. 70.
    Lin N, Sato T, Ito A (2001) Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook. f., suppresses the production and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthritis Rheum 44(9):2193–2200PubMedGoogle Scholar
  71. 71.
    Liacini A, Sylvester J, Zafarullah M (2005) Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes. Biochem Biophys Res Commun 327(1):320–327PubMedGoogle Scholar
  72. 72.
    Tao X et al (2002) Benefit of an extract of Tripterygium Wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis Rheum 46(7):1735–1743PubMedGoogle Scholar
  73. 73.
    Tao X et al (2001) A phase I study of ethyl acetate extract of the Chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J Rheumatol 28(10):2160–2167PubMedGoogle Scholar
  74. 74.
    Ahmed S et al (2005) Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review. Evid Based Complement Alternat Med 2(3):301–308PubMedGoogle Scholar
  75. 75.
    Miller TE et al. (1993) Anti-inflammatory activity of glycogen extracted from Perna canaliculus (NZ green-lipped mussel). Agents Actions 38 Spec No:C139–C142Google Scholar
  76. 76.
    Cobb CS, Ernst E (2006) Systematic review of a marine nutriceutical supplement in clinical trials for arthritis: the effectiveness of the New Zealand green-lipped mussel Perna canaliculus. Clin Rheumatol 25(3):275–284PubMedGoogle Scholar
  77. 77.
    Mani S, Lawson JW (2006) In vitro modulation of inflammatory cytokine and IgG levels by extracts of Perna canaliculus. BMC Complement Altern Med 6:1PubMedGoogle Scholar
  78. 78.
    Halpern GM (2000) Anti-inflammatory effects of a stabilized lipid extract of Perna canaliculus (Lyprinol). Allerg Immunol (Paris) 32(7):272–278Google Scholar
  79. 79.
    Miller T, Wu H (1984) In vivo evidence for prostaglandin inhibitory activity in New Zealand green-lipped mussel extract. N Z Med J 97(757):355–357PubMedGoogle Scholar
  80. 80.
    Lawson BR et al (2007) Immunomodulation of murine collagen-induced arthritis by N, N-dimethylglycine and a preparation of Perna canaliculus. BMC Complement Altern Med 7:20PubMedGoogle Scholar
  81. 81.
    Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 1030:434–441PubMedGoogle Scholar
  82. 82.
    Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9(1):161–168PubMedGoogle Scholar
  83. 83.
    Srivastava KC, Bordia A, Verma SK (1995) Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 52(4):223–227PubMedGoogle Scholar
  84. 84.
    Ranjan D et al (2004) Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J Surg Res 121(2):171–177PubMedGoogle Scholar
  85. 85.
    Liacini A et al (2002) Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21(3):251–262PubMedGoogle Scholar
  86. 86.
    Schulze-Tanzil G et al (2004) Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. Ann N Y Acad Sci 1030:578–586PubMedGoogle Scholar
  87. 87.
    Hong J et al (2004) Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25(9):1671–1679PubMedGoogle Scholar
  88. 88.
    Wallace JM (2002) Nutritional and botanical modulation of the inflammatory cascade—eicosanoids, cyclooxygenases, and lipoxygenases—as an adjunct in cancer therapy. Integr Cancer Ther 1(1):7–37 discussion 37PubMedGoogle Scholar
  89. 89.
    Frondoza CG et al (2004) An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using human synoviocyte cultures. In Vitro Cell Dev Biol Anim 40(3–4):95–101PubMedGoogle Scholar
  90. 90.
    Deodhar SD, Sethi R, Srimal RC (1980) Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 71:632–634PubMedGoogle Scholar
  91. 91.
    Tohda C et al (2006) Comparison of anti-inflammatory activities of six curcuma rhizomes: a possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract. Evid Based Complement Alternat Med 3(2):255–260PubMedGoogle Scholar
  92. 92.
    Afzal M et al (2001) Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol Drug Interact 18(3–4):159–190PubMedGoogle Scholar
  93. 93.
    Ippoushi K (2003) [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci 73(26):3427–3437PubMedGoogle Scholar
  94. 94.
    Jolad SD et al (2004) Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry 65(13):1937–1954PubMedGoogle Scholar
  95. 95.
    Srivastava KC, Mustafa T (1992) Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med Hypotheses 39(4):342–348PubMedGoogle Scholar
  96. 96.
    Srivastava KC, Mustafa T (1989) Ginger (Zingiber officinale) and rheumatic disorders. Med Hypotheses 29(1):25–28PubMedGoogle Scholar
  97. 97.
    Altman RD, Marcussen KC (2001) Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum 44(11):2531–2538PubMedGoogle Scholar
  98. 98.
    Bliddal H et al (2000) A randomized, placebo-controlled, cross-over study of ginger extracts and ibuprofen in osteoarthritis. Osteoarthritis Cartilage 8(1):9–12PubMedGoogle Scholar
  99. 99.
    Ramprasath VR, Shanthi P, Sachdanandam P (2006) Effect of Semecarpus anacardium Linn. nut milk extract on rat neutrophil functions in adjuvant arthritis. Cell Biochem Funct 24(4):333–340PubMedGoogle Scholar
  100. 100.
    Ramprasath VR, Shanthi P, Sachdanandam P (2006) Immunomodulatory and anti-inflammatory effects of Semecarpus anacardium LINN. Nut milk extract in experimental inflammatory conditions. Biol Pharm Bull 29(4):693–700PubMedGoogle Scholar
  101. 101.
    Vijayalakshmi T, Muthulakshmi V, Sachdanandam P (1996) Effect of the milk extract of Semecarpus anacardium nut on adjuvant arthritis—a dose-dependent study in Wistar albino rats. Gen Pharmacol 27(7):1223–1226PubMedGoogle Scholar
  102. 102.
    Vijayalakshmi T, Muthulakshmi V, Sachdanandam P (1997) Salubrious effect of Semecarpus anacardium against lipid peroxidative changes in adjuvant arthritis studied in rats. Mol Cell Biochem 175(1–2):65–69PubMedGoogle Scholar
  103. 103.
    Ravichandran LV, Puvanakrishnan R, Joseph KT (1990) Alterations in the heart lysosomal stability in isoproterenol induced myocardial infarction in rats. Biochem Int 22(2):387–396PubMedGoogle Scholar
  104. 104.
    Denner SS (2007) A review of the efficacy and safety of devil’s claw for pain associated with degenerative musculoskeletal diseases, rheumatoid, and osteoarthritis. Holist Nurs Pract 21(4):203–207PubMedGoogle Scholar
  105. 105.
    Jeon HJ et al (2008) Anti-inflammatory activity of Taraxacum officinale. J Ethnopharmacol 115(1):82–88PubMedGoogle Scholar
  106. 106.
    Cleland LG, James MJ, Proudman SM (2006) Fish oil: what the prescriber needs to know. Arthritis Res Ther 8(1):202PubMedGoogle Scholar
  107. 107.
    Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6 Suppl):1505S–1519SPubMedGoogle Scholar
  108. 108.
    De Caterina R, Massaro M (2005) Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J Membr Biol 206(2):103–116PubMedGoogle Scholar
  109. 109.
    Novak TE et al (2003) NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am J Physiol Lung Cell Mol Physiol 284(1):L84–L89PubMedGoogle Scholar
  110. 110.
    Zhao Y et al (2004) Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J Am Coll Nutr 23(1):71–78PubMedGoogle Scholar
  111. 111.
    Adam O et al (2003) Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis. Rheumatol Int 23(1):27–36PubMedGoogle Scholar
  112. 112.
    Goldberg RJ, Katz J (2007) A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 129(1–2):210–223PubMedGoogle Scholar
  113. 113.
    Galarraga B et al (2008) Cod liver oil (n-3 fatty acids) as an non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis. Rheumatology (Oxford) 47(5):665–669Google Scholar
  114. 114.
    Berbert AA et al (2005) Supplementation of fish oil and olive oil in patients with rheumatoid arthritis. Nutrition 21(2):131–136PubMedGoogle Scholar
  115. 115.
    Ozturk HS et al (1999) Oxidant/antioxidant status of plasma samples from patients with rheumatoid arthritis. Rheumatol Int 19(1–2):35–37PubMedGoogle Scholar
  116. 116.
    Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32(8):1870–1874PubMedGoogle Scholar
  117. 117.
    Halliwell B, Hoult JR, Blake DR (1988) Oxidants, inflammation, and anti-inflammatory drugs. FASEB J 2(13):2867–2873PubMedGoogle Scholar
  118. 118.
    Jaswal S et al (2003) Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 338(1–2):123–129PubMedGoogle Scholar
  119. 119.
    Kalavacherla US et al (1994) Malondialdehyde as a sensitive marker of inflammation in patients with rheumatoid arthritis. J Assoc Physicians India 42(10):775–776PubMedGoogle Scholar
  120. 120.
    Gambhir JK, Lali P, Jain AK (1997) Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 30(4):351–355PubMedGoogle Scholar
  121. 121.
    Chaturvedi V et al (1999) Estimation & significance of serum & synovial fluid malondialdehyde levels in rheumatoid arthritis. Indian J Med Res 109:170–174PubMedGoogle Scholar
  122. 122.
    van Vugt RM et al (2008) Antioxidant intervention in rheumatoid arthritis: results of an open pilot study. Clin Rheumatol 27(6):771–775PubMedGoogle Scholar
  123. 123.
    Selvam R et al (2007) Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sci 80(26):2403–2410PubMedGoogle Scholar
  124. 124.
    Kumar VS et al (2005) Optimization of pulsed electromagnetic field therapy for management of arthritis in rats. Bioelectromagnetics 26(6):431–439PubMedGoogle Scholar
  125. 125.
    Almaden Y et al (2002) Regulation of arachidonic acid production by intracellular calcium in parathyroid cells: effect of extracellular phosphate. J Am Soc Nephrol 13(3):693–698PubMedGoogle Scholar
  126. 126.
    Segal NA et al (2001) Two configurations of static magnetic fields for treating rheumatoid arthritis of the knee: a double-blind clinical trial. Arch Phys Med Rehabil 82(10):1453–1460PubMedGoogle Scholar
  127. 127.
    Werneke U et al (2004) Potential health risks of complementary alternative medicines in cancer patients. Br J Cancer 90(2):408–413PubMedGoogle Scholar
  128. 128.
    Sundrarjun T et al (2004) Effects of n-3 fatty acids on serum interleukin-6, tumour necrosis factor-alpha and soluble tumour necrosis factor receptor p55 in active rheumatoid arthritis. J Int Med Res 32(5):443–454PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Rheumatology Division, Lincoln Medical and Mental Health CenterWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations