Rheumatology International

, Volume 30, Issue 10, pp 1299–1303 | Cite as

The −283C/T polymorphism of the DNMT3B gene influences the progression of joint destruction in rheumatoid arthritis

  • Eon Jeong Nam
  • Kyung Hoon Kim
  • Seung Woo Han
  • Chang Min Cho
  • Jongmin Lee
  • Jae Yong Park
  • Young Mo Kang
Original Article

Abstract

The objective of this study is to investigate the association between the −283C/T polymorphism at the promotor of DNMT3B gene and susceptibility to rheumatoid arthritis (RA) and to evaluate the effect of the polymorphism on clinical features such as progression of joint destruction in RA. A total of 309 patients with RA were compared with 297 control subjects. Genotyping of the −283C/T polymorphism was performed by real-time sequencing using Pyrosequencer. The genotype frequencies of the polymorphism at position −283 were not significantly different between patients with RA and controls. There were significantly positive correlations between the modified Sharp score and the disease duration for carriers of each genotype (y = 9.546x + 19.998, p < 0.001, for T allele carriers, y = 6.185x + 34.424, p < 0.001 for CC homozygotes). The slope of regression line of the T allele carriers was significantly steeper than that of the CC homozygotes (p = 0.014). In conclusion, our results suggest that the −283C/T polymorphism of the DNMT3B gene is a genetic marker related to the joint destruction of RA.

Keywords

DNMT3B Polymorphism Rheumatoid arthritis Modified Sharp score 

Notes

Acknowledgment

This work was supported by a Medical Research Institute grant, Kyungpook National University Hospital (2005).

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

  1. 1.
    Richardson B (2003) DNA methylation and autoimmune disease. Clin Immunol 109:72–79. doi: 10.1016/S1521-6616(03)00206-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J 174:341–348. doi: 10.1503/cmaj.050774 CrossRefGoogle Scholar
  3. 3.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054. doi: 10.1056/NEJMra023075 CrossRefPubMedGoogle Scholar
  4. 4.
    Richardson B (1986) Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4 + cells. Hum Immunol 17:456–470. doi: 10.1016/0198-8859(86)90304-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Quddus J, Johnson KJ, Gavalchin J et al (1993) Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 92:38–53. doi: 10.1172/JCI116576 CrossRefPubMedGoogle Scholar
  6. 6.
    Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33:1665–1673. doi: 10.1002/art.1780331109 CrossRefPubMedGoogle Scholar
  7. 7.
    Kim YI, Logan JW, Mason JB, Roubenoff R (1996) DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J Lab Clin Med 128:165–172. doi: 10.1016/S0022-2143(96)90008-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Liang G, Chan MF, Tomigahara Y et al (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491. doi: 10.1128/MCB.22.2.480-491.2002 CrossRefPubMedGoogle Scholar
  9. 9.
    Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220. doi: 10.1038/890 CrossRefPubMedGoogle Scholar
  10. 10.
    Lee SJ, Jeon HS, Jang JS et al (2005) DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis 26:403–409. doi: 10.1093/carcin/bgh307 CrossRefPubMedGoogle Scholar
  11. 11.
    Montgomery KG, Liu MC, Eccles DM, Campbell IG (2004) The DNMT3B C → T promoter polymorphism and risk of breast cancer in a British population: a case–control study. Breast Cancer Res 6:R390–R394. doi: 10.1186/bcr807 CrossRefPubMedGoogle Scholar
  12. 12.
    Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324. doi: 10.1002/art.1780310302 CrossRefPubMedGoogle Scholar
  13. 13.
    Han SW, Kim GW, Seo JS et al (2004) VEGF gene polymorphisms and susceptibility to rheumatoid arthritis. Rheumatology 43:1173–1177. doi: 10.1093/rheumatology/keh281 CrossRefPubMedGoogle Scholar
  14. 14.
    Ehrlich M (2003) The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 109:17–28. doi: 10.1016/S1521-6616(03)00201-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Yung RL, Quddus J, Chrisp CE, Johnson KJ, Richardson BC (1995) Mechanism of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. J Immunol 154:3025–3035PubMedGoogle Scholar
  16. 16.
    Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4:235–240. doi: 10.1038/ni887 CrossRefPubMedGoogle Scholar
  17. 17.
    Mikovits JA, Young HA, Vertino P et al (1998) Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol Cell Biol 18:5166–5177PubMedGoogle Scholar
  18. 18.
    Richardson BC (2002) Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 132:2401S–2405SPubMedGoogle Scholar
  19. 19.
    Richardson B, Powers D, Hooper F, Yung RL, O’Rourke K (1994) Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum 37:1363–1372. doi: 10.1002/art.1780370915 CrossRefPubMedGoogle Scholar
  20. 20.
    Kitazawa S, Kitazawa R (2002) Epigenetic control of mouse receptor activator of NF-kappa B ligand gene expression. Biochem Biophys Res Commun 293:126–131. doi: 10.1016/S0006-291X(02)00189-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Eon Jeong Nam
    • 1
  • Kyung Hoon Kim
    • 1
  • Seung Woo Han
    • 1
  • Chang Min Cho
    • 1
  • Jongmin Lee
    • 2
  • Jae Yong Park
    • 1
  • Young Mo Kang
    • 1
  1. 1.Division of Rheumatology, Department of Internal MedicineKyungpook National University HospitalDaeguRepublic of Korea
  2. 2.Department of Diagnostic RadiologyKyungpook National University School of MedicineDaeguRepublic of Korea

Personalised recommendations