Rheumatology International

, Volume 29, Issue 8, pp 927–935 | Cite as

Pulse electromagnetic fields effects on serum E2 levels, chondrocyte apoptosis, and matrix metalloproteinase-13 expression in ovariectomized rats

  • QingLu Luo
  • Sha-Sha Li
  • ChengQi He
  • HongChen He
  • Lin Yang
  • Li Deng
Original Article


Observe pulse electromagnetic fields (PEMFs) effects on ovariectomized (OVX) rats, to study the mechanisms of PEMFs therapy for postmenopausal osteoarthritis. Forty-eight female rats were exposed to PEMFs (PEMFs group), administrated E2 and placebo PEMFs (E group), or were treated with placebo PEMFs (OVX and Sham groups). The treatment duration was 30 days after which serum E2 levels, chondrocyte morphology, chondrocyte apoptosis and matrix metalloproteinases-13 expression in knee joint was analyzed. We observed differential chondrocyte formation in each group, and serum E2 content in the PEMFs and E group were significantly higher than the OVX group. The apoptosis index of chondrocytes and the positive index of MMP13 expression in the PEMFs group and E group were significantly lower than the OVX group. PEMFs has a systemic effect on estrogen metabolism in ovariectomized rats, then inhibit chondrocyte apoptosis and downregulate MMP13 expression of knee joint cartilage. It may be the mechanisms by which PEMFs therapy works for on postmenopausal osteoarthritis.


Estrogen Osteoarthritis Pulse electromagnetic fields Chondrocyte Apoptosis Matrix metalloproteinases-13 



The authors thank Zhen-Mei An, Ph.D. for technical assistance with the serum E2 assay. We would also like to thank Yin-Ling Deng for help with the TUNEL assay. We thank the National Natural Science Fund for the financial support.


  1. 1.
    Kalichman L, Kobyliansky E (2007) Age, body composition, and reproductive indices as predictors of radiographic hand osteoarthritis in Chuvashian women. Scand J Rheumatol 36:53–57. doi: 10.1080/03009740600902460 PubMedCrossRefGoogle Scholar
  2. 2.
    Cooley HM, Stankovich J, Jones G (2003) The association between hormonal and reproductive factors and hand osteoarthritis. Maturitas 45:257–265. doi: 10.1016/S0378-5122(03)00151-8 PubMedCrossRefGoogle Scholar
  3. 3.
    Hoegh-Andersen P, Tanko LB, Andersen TL et al (2004) Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 6:R169–R180. doi: 10.1186/ar1152 PubMedCrossRefGoogle Scholar
  4. 4.
    Dai G, Wang S, Li J et al (2006) The validity of osteoarthritis model induced by bilateral ovariectomy in guinea pig. J Huazhong Univ Sci Technolog Med Sci 26:716–719. doi: 10.1007/s11596-006-0624-2 PubMedCrossRefGoogle Scholar
  5. 5.
    Sharma L (2002) Nonpharmacologic management of osteoarthritis. Curr Opin Rheumatol 14:603–607. doi: 10.1097/00002281-200209000-00022 PubMedCrossRefGoogle Scholar
  6. 6.
    John T, Muller RD, Oberholzer A et al (2007) Interleukin-10 modulates pro-apoptotic effects of TNF-ain human articular chondrocytes in vitro. Cytokine 40:226–234. doi: 10.1016/j.cyto.2007.10.002 PubMedCrossRefGoogle Scholar
  7. 7.
    Kim HA, Blanco FJ (2007) Cell death and apoptosis in ostearthritic cartilage. Curr Drug Targets 8:333–345. doi: 10.2174/138945007779940025 PubMedCrossRefGoogle Scholar
  8. 8.
    Morquette B, Shi Q, Lavigne P et al (2006) Production of lipid peroxidation products in osteoarthritic tissues—new evidence linking 4-hydroxynonenal to cartilage degradation. Arthritis Rheum 54:271–281. doi: 10.1002/art.21559 PubMedCrossRefGoogle Scholar
  9. 9.
    Manacu CA, Martel-Pelletier J, Roy-Beaudry M et al (2005) Endothelin-1 in osteoarthritic chondrocytes triggers nitric oxide production and upregulates collagenase production. Arthritis Res Ther 7:R324–R332. doi: 10.1186/ar1489 PubMedCrossRefGoogle Scholar
  10. 10.
    Oshima Y, Matsuda K, Yoshida A et al (2007) Localization of estrogen receptors alpha and beta in the articular surface of the rat femur. Acta Histochem Cytochem 40:27–34. doi: 10.1267/ahc.06015 PubMedCrossRefGoogle Scholar
  11. 11.
    Dai G, Li J, Liu X et al (2005) The relationship of the expression of estrogen receptor in cartilage cell and osteoarthritis induced by bilateral ovariectomy in guinea pig. J Huazhong Univ Sci Technolog Med Sci 25:683–686PubMedGoogle Scholar
  12. 12.
    Valdes AM, Hart DJ, Jones KA et al (2004) Association study of candidate genes for the prevalence and progression of knee osteoarthritis. Arthritis Rheum 50:2497–2507. doi: 10.1002/art.20443 PubMedCrossRefGoogle Scholar
  13. 13.
    Bergink AP, van Meurs JB, Loughlin J et al (2003) Estrogen receptor alpha gene haplotype is associated with radiographic osteoarthritis of the knee in elderly men and women. Arthritis Rheum 48:1913–1922. doi: 10.1002/art.11046 PubMedCrossRefGoogle Scholar
  14. 14.
    Lian K, Lui L, Zmuda JM et al (2007) Estrogen receptor alpha genotype is associated with a reduced prevalence of radiographic hip osteoarthritis in elderly Caucasian women. Osteoarthr Cartil 15:972–978. doi: 10.1016/j.joca.2007.02.020 PubMedCrossRefGoogle Scholar
  15. 15.
    Jin SY, Hong SJ, Yang HI et al (2004) Estrogen receptor alpha gene haplo type is associated with primary knee osteoarthritis in Korean population. Arthritis Res Ther 6:R415–R421. doi: 10.1186/ar1207 PubMedCrossRefGoogle Scholar
  16. 16.
    Fytili P, Giannatou E, Papanikolaou V et al (2005) Association of repeat polymorphisms in the estrogen receptors alpha, beta, and androgen receptor genes with knee osteoarthritis. Clin Genet 68:268–277. doi: 10.1111/j.1399-0004.2005.00495.x PubMedCrossRefGoogle Scholar
  17. 17.
    Kang SC, Lee DG, Choi JH et al (2007) Association between estrogen receptor polymorphism and pain susceptibility in female temporomandibular joint osteoarthritis patients. Int J Oral Maxillofac Surg 36:391–394. doi: 10.1016/j.ijom.2006.12.004 PubMedCrossRefGoogle Scholar
  18. 18.
    Kinney RC, Schwartz Z, Week K et al (2005) Human articular chondrocytes exhibit sexual dimorphism in their responses to 17 beta-estradiol. Osteoarthr Cartil 13:330–337. doi: 10.1016/j.joca.2004.12.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Claassen H, Schluter M, Schunke M et al (2006) Influence of 17 beta-estradiol and insulin on type II collagen and protein synthesis of articular chondrocytes. Bone 39:310–317. doi: 10.1016/j.bone.2006.02.067 PubMedCrossRefGoogle Scholar
  20. 20.
    Oestergaard S, Sondergaard BC, Hoegh-Andersen P et al (2006) Effects of ovariectomy and estrogen therapy on type II collagen degradation and structural integrity of articular cartilage in rats: implications of the time of initiation. Arthritis Rheum 54:2441–2451. doi: 10.1002/art.22009 PubMedCrossRefGoogle Scholar
  21. 21.
    Lee YJ, Lee EB, Kwon YE et al (2003) Effect of estrogen on the expression of matrix metalloproteinase (MMP)1, MMP3, and MMP13 and tissue inhibitor of metalloproternase1 in osteoarthritis chondrocytes. Rheumatol Int 23:282–288. doi: 10.1007/s00296-003-0312-5 PubMedCrossRefGoogle Scholar
  22. 22.
    Lu T, Achari Y, Sciore P et al (2006) Estrogen receptor alpha regulates matrix metalloproteinase-13 promoter activity primarily through the AP-1 transcriptional regulatory site. Biochim Biophys Acta 1762:719–731PubMedGoogle Scholar
  23. 23.
    Richette P, Dumontier MF, Francois M et al (2004) Dual effects of 17beta oestradiol on interleukin 1 beta induced proteoglycan degradation in chondrocytes. Ann Rheum Dis 63:191–199. doi: 10.1136/ard.2003.006510 PubMedCrossRefGoogle Scholar
  24. 24.
    Song YJ, Wu ZH, Lin SQ et al (2003) The effect of estrogen and progestin on the expression of matrix metalloproteinases, tissue inhibitor of metalloproteinase and interleukin-1β mRNA in synovia of OA rabbit model. Zhonghua Yi Xue Za Zhi 83:498–503PubMedGoogle Scholar
  25. 25.
    Wan R, Yang Q, Deng L et al (2005) Effect of estrogen on collagen epitope expression of chondrocytes. Chin J Sports Med 24:187–190. doi: 10.1016/j.csm.2004.08.005 CrossRefGoogle Scholar
  26. 26.
    Chagin AS, Chrysis D, Takigawa M et al (2006) Locally produced estrogen promotes fetal rat metatarsal bone growth; an effect mediated through increased chondrocyte proliferation and decreased apoptosis. J Endocrinol 188:193–203. doi: 10.1677/joe.1.06364 PubMedCrossRefGoogle Scholar
  27. 27.
    Fischer G, Pelka RB, Barovic J (2005) Adjuvant treatment of osteoarthritis of the knee with weak pulsing magnetic fields. Results of a prospective, placebo controlled trial. Z Orthop Ihre Grenzgeb 143:544–550. doi: 10.1055/s-2005-836830 PubMedCrossRefGoogle Scholar
  28. 28.
    Sutbeyaz ST, Sezer N, Koseoglu BF (2006) The effect of pulsed electromagnetic fields in the treatment of cervical osteoarthritis: a randomized, double-blind, sham-controlled trial. Rheumatol Int 26:320–324. doi: 10.1007/s00296-005-0600-3 PubMedCrossRefGoogle Scholar
  29. 29.
    Nicolakis P, Kollmitzer J, Crevenna R et al (2002) Pulsed magnetic field therapy for osteoarthritis of the knee—a double-blind sham-controlled trial. Wien Klin Wochenschr 114:678–684PubMedGoogle Scholar
  30. 30.
    Battisti E, Piazza E, Rigato M (2004) Efficacy and safety of a musically modulated electromagnetic field (TAMMEF) in patients affected by knee osteoarthritis. Clin Exp Rheumatol 22:568–572PubMedGoogle Scholar
  31. 31.
    Wolsko PM, Eisenberg DM, Simon LS et al (2004) Double-blind placebo-controlled trial of static magnets for the treatment of osteoarthritis of the knee: results of a pilot study. Altern Ther Health Med 10:36–43PubMedGoogle Scholar
  32. 32.
    Del Seppia C, Ghione S, Luschi P et al (2007) Pain perception and electromagnetic fields. Neurosci Biobehav Rev 31:619–642. doi: 10.1016/j.neubiorev.2007.01.003 PubMedCrossRefGoogle Scholar
  33. 33.
    Beecher BR, Martin JA, Pedersen DR et al (2007) Antioxidants block cyclic loading induced chondrocyte death. Iowa Orthop J 27:1–8PubMedGoogle Scholar
  34. 34.
    Kurz B, Lemke A, Kehn M et al (2004) Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum 50:123–130. doi: 10.1002/art.11438 PubMedCrossRefGoogle Scholar
  35. 35.
    De Nicola M, Cordisco S, Cerella C et al (2006) Magnetic fields protect from apoptosis via redox alteration. Ann N Y Acad Sci 1090:59–68. doi: 10.1196/annals.1378.006 PubMedCrossRefGoogle Scholar
  36. 36.
    Ciombor DM, Aaron RK, Wang S et al (2003) Modification of osteoarthritis by pulsed electromagnetic field—a morphological study. Osteoarthr Cartil 11:455–462. doi: 10.1016/S1063-4584(03)00083-9 PubMedCrossRefGoogle Scholar
  37. 37.
    Marino AA, Wolcott RM, Chervenak R et al (2001) Coincident nonlinear changes in the endocrine and immune systems due to low-frequency magnetic fields. Neuroimmunomodulation 9:65–77. doi: 10.1159/000049009 PubMedCrossRefGoogle Scholar
  38. 38.
    Izmest’eva OS, Parshkov EM, Zhavoronkov LP et al (2003) Effects of electromagnetic field of thermal intensity on the hypophysis-thyroid unit of the neuroendocrine system. Radiats Biol Radioecol 43:597–600PubMedGoogle Scholar
  39. 39.
    Reyes-Guerrero G, Vazquez-Garcia M, Elias-Vinas D et al (2006) Effects of 17 b-estradiol and extremely low-frequency electromagnetic fields on social recognition memory in female rats: A possible interaction? Brain Res 1095:131–138. doi: 10.1016/j.brainres.2006.04.020 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • QingLu Luo
    • 1
  • Sha-Sha Li
    • 1
  • ChengQi He
    • 1
  • HongChen He
    • 1
  • Lin Yang
    • 1
  • Li Deng
    • 2
  1. 1.Department of Rehabilitation, West China Hospital Sichuan UniversityChengduPeople’s Republic of China
  2. 2.Laboratory of Stem Cell and Histiology Engineering, West China Hospital Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations