Rheumatology International

, Volume 29, Issue 5, pp 525–534 | Cite as

Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation

  • Kelvin S. C. Cheung
  • Ko Hashimoto
  • Norikazu Yamada
  • Helmtrud I. Roach
Original Article

Abstract

The two major aggrecanases involved in osteoarthritis (OA) are ADAMTS-4 and ADAMTS-5. Knock-out studies suggested that ADAMTS-5, but not ADAMTS-4, is the major aggrecanase in murine OA. However, studies of human articular cartilage suggest that ADAMTS-4 also contributes to aggrecan degradation in human OA. This study investigated ADAMTS-4 in human OA. While ADAMTS-4 was virtually absent in control cartilage, numerous ADAMTS-4 immuno-positive chondrocytes were present in OA cartilage and their numbers increased with disease severity. RT-PCR confirmed expression, especially in the surface zone. DNA methylation was lost at specific CpG sites in the ADAMTS-4 promoter in OA chondrocytes, suggesting that the increased gene expression was more than a simple up-regulation, but involved loss of DNA methylation at specific CpG sites, resulting in a heritable and permanent expression of ADAMTS-4 in OA chondrocytes. These results suggest that ADAMTS-4 is epigenetically regulated and plays a role in aggrecan degradation in human OA.

Keywords

ADAMTS-4 Osteoarthritis DNA methylation Gene expression Immunocytochemistry Histology 

Notes

Acknowledgments

This study was supported by grant no. 43747 from the Wessex Medical Trust. All authors thank the Orthopaedic Surgeons of Southampton General Hospital, especially Mr. Simon Tilley and Mr. Ben Bolland, for supplying the femoral heads following joint replacement surgery. We are grateful to Miss Wai Mun Loo for contributing Fig. 2j and k. We also gratefully acknowledge funding by the Wessex Medical Trust and all the “Great Hip & Knee” Walkers without whom this research would not have been possible. Last, but not least, the excellent editing by Dr. Felix Bronner, University of Connecticut Health Center, is also much appreciated.

References

  1. 1.
    Lohmander LS (1994) Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. J Anat 184:477–492PubMedGoogle Scholar
  2. 2.
    Goldring MB (2000) Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2:459–465. doi:10.1007/s11926-000-0021-y PubMedCrossRefGoogle Scholar
  3. 3.
    Moskowitz RW, Howell DS, Goldberg VM, Muniz O, Pita JC (1979) Cartilage proteoglycan alterations in an experimentally induced model of rabbit osteoarthritis. Arthritis Rheum 22:155–163. doi:10.1002/art.1780220208 PubMedCrossRefGoogle Scholar
  4. 4.
    Bendele AM, Hulman JF (1988) Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum 31:561–565. doi:10.1002/art.1780310416 PubMedCrossRefGoogle Scholar
  5. 5.
    Mankin HJ, Lippiello L (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J Bone Joint Surg 52:424–434 AmPubMedGoogle Scholar
  6. 6.
    Sandy JD, Verscharen C (2001) Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 358:615–626. doi:10.1042/0264-6021:3580615 PubMedCrossRefGoogle Scholar
  7. 7.
    Malfait AM, Liu RQ, Ijiri K, Komiya S, Tortorella MD (2002) Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem 277:22201–22208. doi:10.1074/jbc.M200431200 PubMedCrossRefGoogle Scholar
  8. 8.
    Tortorella MD, Malfait AM, Deccico C, Arner E (2001) The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage 9:539–552. doi:10.1053/joca.2001.0427 PubMedCrossRefGoogle Scholar
  9. 9.
    Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2:322–329. doi:10.1016/S1471-4892(02)00148-0 PubMedCrossRefGoogle Scholar
  10. 10.
    Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, Singer II, Donatelli SA, Weidner JR, Williams HR, Mumford RA, Lohmander LS (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100:93–106. doi:10.1172/JCI119526 PubMedCrossRefGoogle Scholar
  11. 11.
    Wachsmuth L, Bau B, Fan Z, Pecht A, Gerwin N, Aigner T (2004) ADAMTS-1, a gene product of articular chondrocytes in vivo and in vitro, is downregulated by interleukin 1beta. J Rheumatol 31:315–320PubMedGoogle Scholar
  12. 12.
    Collins-Racie LA, Flannery CR, Zeng W, Corcoran C, Annis-Freeman B, Agostino MJ, Arai M, Blasio-Smith E, Dorner AJ, Georgiadis KE, Jin M, Tan XY, Morris EA, LaVallie ER (2004) ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol 23:219–230. doi:10.1016/j.matbio.2004.05.004 PubMedCrossRefGoogle Scholar
  13. 13.
    Song RH, Tortorella MD, Malfait AM, Alston JT, Yang Z, Arner EC, Griggs DW (2007) Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 56:575–585. doi:10.1002/art.22334 PubMedCrossRefGoogle Scholar
  14. 14.
    Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648. doi:10.1038/nature03369 PubMedCrossRefGoogle Scholar
  15. 15.
    Hollander AP, Atkins RM, Eastwood DM, Dieppe PA, Elson CJ (1991) Degradation of human cartilage by synovial fluid but not cytokines in vitro. Ann Rheum Dis 50:57–58. doi:10.1136/ard.50.1.57 PubMedCrossRefGoogle Scholar
  16. 16.
    Roach HI, Yamada N, Cheung KS, Tilley S, Clarke NM, Oreffo RO, Kokubun S, Bronner F (2005) Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 52:3110–3124. doi:10.1002/art.21300 PubMedCrossRefGoogle Scholar
  17. 17.
    Dequeker J (1999) The inverse relationship between osteoporosis and osteoarthritis. Adv Exp Med Biol 455:419–422PubMedGoogle Scholar
  18. 18.
    Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, Van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14:13–29. doi:10.1016/j.joca.2005.07.014 PubMedCrossRefGoogle Scholar
  19. 19.
    Roach HI, Hashimoto K (2007) PCR-based methods to determine DNA methylation status at specific CpG sites using methylation-sensitive restriction enzymes. In: Hughes S, Moody A (eds) Methods express: PCR. Scion Publishing Ltd, Oxfordshire, pp 279–292Google Scholar
  20. 20.
    Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103. doi:10.1186/ar630 PubMedCrossRefGoogle Scholar
  21. 21.
    Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL, Flannery CR, Kanki K, Wang E, Peluso D, Yang Z, Majumdar MK, Morris EA (2004) Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum 50:2547–2558. doi:10.1002/art.20558 PubMedCrossRefGoogle Scholar
  22. 22.
    Pelletier JP, Boileau C, Boily M, Brunet J, Mineau F, Geng C, Reboul P, Laufer S, Lajeunesse D, Martel-Pelletier J (2005) The protective effect of licofelone on experimental osteoarthritis is correlated with the downregulation of gene expression and protein synthesis of several major cartilage catabolic factors: MMP-13, cathepsin K and aggrecanases. Arthritis Res Ther 7:R1091–R1102. doi:10.1186/ar1788 PubMedCrossRefGoogle Scholar
  23. 23.
    Thirunavukkarasu K, Pei Y, Moore TL, Wang H, Yu XP, Geiser AG, Chandrasekhar S (2006) Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines. Biochem Biophys Res Commun 345:197–204. doi:10.1016/j.bbrc.2006.04.023 PubMedCrossRefGoogle Scholar
  24. 24.
    Pogribny IP, Pogribna M, Christman JK, James SJ (2000) Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res 60:588–594PubMedGoogle Scholar
  25. 25.
    Robertson KD, Hayward SD, Ling PD, Samid D, Ambinder RF (1995) Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol Cell Biol 15:6150–6159PubMedGoogle Scholar
  26. 26.
    Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58:2686–2693. doi:10.1002/art.23758 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Kelvin S. C. Cheung
    • 1
  • Ko Hashimoto
    • 1
    • 2
  • Norikazu Yamada
    • 1
    • 2
  • Helmtrud I. Roach
    • 1
  1. 1.Bone and Joint Research Group, IDS Building, MP887General Hospital, University of SouthamptonSouthamptonUK
  2. 2.Department of Orthopaedic SurgeryTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations