Rheumatology International

, Volume 29, Issue 4, pp 371–375

The importance of severity of arthrosis for the reliability of bone mineral density measurement in women

  • Alper Hayirlioglu
  • Husnu Gokaslan
  • Canan Cimsit
  • Begumhan Baysal
Original Paper


The objective of this study is to investigate the effect of the severity of degenerative changes on measurements of A-P lumbar spines BMD values and to determine the reliability of DEXA measurements associated with severity of the disease on A-P lumbar spines BMD values using DEXA. The measurements using DEXA were taken from L2–L4 spines and femoral neck of total 271 female cases. One hundred and ten of them had mild arthrosis (Group 0), and 69 had severe arthrosis (Group 1). Ninety-two cases without arthrosis were chosen as control group (Group 2). The cases with arthrosic changes were grouped according to their degree of severity of arthrosis. The groups were compared two by two and Tukey multiple comparison test was used for the analysis of the difference of the means of the groups. The mean age of cases was 61.79, 61.84, and 60.47, respectively. The average height was 157.26, 155.93, and 15.92 cm while the average weight was 69.21, 70.78, and 71.45 kg, respectively. The mean body mass index (BMI) was 0.00283, 0.00291, and 0.00293, respectively. L2–L4 A-P spinal BMD values were 0.9870, 0.9848, and 1.0836 g/cm2 while the femoral neck BMD values were 0.7964, 0.8056, and 0.8223 g/cm2, respectively. There was no statistical significance between study and control groups in terms of age, weight, height, BMI, and BMD values obtained from femoral neck. However, lumbar region BMD values of the cases with severe arthrosis were statistically significantly high when compared with other two groups. The femoral neck measurement is the prominent alternative method in severe arthrosis while taking measurements from lumbar region is still the most appropriate method in cases with mild arthrosis without having giant osteophytes.


Dual energy X-ray absorptiometry (DEXA) Osteophytes Arthrosis Lumbar spine Femoral neck 


  1. 1.
    Riggs BL, Melton LJIII (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686PubMedGoogle Scholar
  2. 2.
    Mazess RB, Peppler WW, Lange TA, Lindgren U, Smith E (1984) Does bone measurement on the radius indicate skeletal status? Concise communication. J Nucl Med 25:281–288PubMedGoogle Scholar
  3. 3.
    Pocock NA, Eisman JA, Yeates MG, Sambrook PN, Ebert S, Wren BG (1986) Limitations of forearm bone densitometry as an index of vertebral or femoral neck osteopenia. J Bone Miner Res 1:369–375PubMedGoogle Scholar
  4. 4.
    Nilas L, Gotfredsen A, Riis BJ, Christiansen C (1986) The diagnostic validity of local and total bone mineral measurements in postmenopausal osteoporosis and osteoarthritis. Clin Endocrinol 25:711–720. doi:10.1111/j.1365-2265.1986.tb03627.x CrossRefGoogle Scholar
  5. 5.
    Ryan PJ, Evans P, Blake GM, Fogeman I (1992) The effect of vertebral collapse on spinal bone mineral density measurements in osteoporosis. Bone Miner 18:267–272. doi:10.1016/0169-6009(92)90812-R PubMedCrossRefGoogle Scholar
  6. 6.
    Wahner HW, Dunn WL, Riggs BL (1983) Non invasive bone mineral measurements. Semin Nucl Med 13:282–289. doi:10.1016/S0001-2998(83)80021-X PubMedCrossRefGoogle Scholar
  7. 7.
    Health and Public Committee, American College of Physicians. (1984) Radiologic methods to evaluate bone mineral content. Ann Intern Med 100:908–911Google Scholar
  8. 8.
    Johnston CC Jr, Melton LJIII, Lindsay R, Eddy DM (1989) Clinical indications for bone mass measurements. J Bone Miner Res 4(Suppl 2):1–28Google Scholar
  9. 9.
    Riggs BL, Wahner HW (1988) Bone densitometry and clinical decision making in osteoprosis. Ann Intern Med 102:293–294Google Scholar
  10. 10.
    National Osteoprosis Foundation Scientific advisory Board (1989) Clinical indications for bone mass measurements. J Bone Mineral Res (Suppl 2) 41–28Google Scholar
  11. 11.
    Kröger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Mineral 17:75–85CrossRefGoogle Scholar
  12. 12.
    Mazess RB, Barden HS (1989) Bone densitometry for diagnosis and monitoring osteoporosis. Proc Soc Exp Biol Med 191:261–271PubMedGoogle Scholar
  13. 13.
    Mazess RB, Barden H, Ettinger M, Schultz E (1988) Bone density of radius, spine, and proximal femur in osteoporosis. J Bone Miner Res 3:13–18PubMedGoogle Scholar
  14. 14.
    Mazess RB (1990) Bone densitometry of the axial skeleton. Orthop Clin of North Am 21:51–63Google Scholar
  15. 15.
    Kelly TL, Slovik DM, Schoenfeld DA, Neer RM (1988) Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 67:839–844PubMedGoogle Scholar
  16. 16.
    Genant HK, Faulkner KG, Glüer CC, Engelke K (1993) Bone densitometry: current assessment. Osteoporosis Int 3(Suppl. 1):S91–S97CrossRefGoogle Scholar
  17. 17.
    Sartoris DJ, Resnick D (1989) Osteoporosis: update on densitometric techniques. J Musculoskeletal Med 6:108–123Google Scholar
  18. 18.
    Sartoris DJ, Resnick D (1989) Dual-energy radiographic absorptiometry for bone densitometry: current status and perspective. AJR 152:241–246PubMedGoogle Scholar
  19. 19.
    Edmondston SJ, Singer KP, Price RI, Breidahl PD (1993) Accuracy of lateral dual energy X-ray absoptiometry for the determination of bone mineral content in the thoracic and lumbar spine: an in vitro study. Br J Radiol 66:309–313PubMedGoogle Scholar
  20. 20.
    Wilson CR, Fogelman I, Blake GM, Rodin A (1991) The effect of positioning on dual energy X-ray bone densitometry of the proximal femur. Bone Mineral 13:69–76CrossRefGoogle Scholar
  21. 21.
    Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL (1988) Comparison of dual energy X-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc 63:1075–1084PubMedGoogle Scholar
  22. 22.
    Orwoll ES, Oviatt SK, mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70:1202–1207PubMedGoogle Scholar
  23. 23.
    Reid IR, Evans MC, Ames R, Wattie DJ (1991) The influence of osteophytes and aortic calcification on spinal mineral density in postmenopausal women. J Clin Endocrinol Metab 72:1372–1374PubMedCrossRefGoogle Scholar
  24. 24.
    Hopkins A, Zylstra S, Hreshchyshyn M (1988) Normal and abnormal features of the lumbar spine observed in dual photon absorptiometry scans. Clin Nucl Med 14:410–414CrossRefGoogle Scholar
  25. 25.
    Giannini S, D’ Angelo A, Pati T, Al Awady M, Malvasi L, Castrignano R, Benetollo P, Crepaldi G (1990) Bone density and lumbar spine deformities in normal and osteoporotic women. In: Hristiansen C, Overgaard K (eds) Osteoporosis 1990. Osteopress APS, Copenhagen, pp 676–677Google Scholar
  26. 26.
    Dawson-Hughes B, Dallal GE (1990) Effect of radiographic abnormalities on rate of bone loss from the spine. Calcif Tissue Int 46:280–281PubMedCrossRefGoogle Scholar
  27. 27.
    Ross PD, Wasnich RD, Wogel JM (1987) Magnitude of artifact errors in spine dual photon absorptiometry measurements. In: Christiansen C, Overgaard K (eds) Osteoporosis. Osteopress APS, Copenhagen 389–391Google Scholar
  28. 28.
    Banks LM, Lees B, Mac Sweeney BE, Stevenson JC (1990) Effect of extraneous calcification and degenerative changes in the spine on long-term bone density measurements. In: Christiansen C, Overgaard K (eds) Osteoporosis 1990. Osteopress, Copenhagen, pp 839–840Google Scholar
  29. 29.
    Cherney DD, Laymon MS, McNitt A, Yuly S (2002) A study on the influence of calcified intervertebral disk and aorta in determining bone mineral density. J Clin Densitom 5(2):193–198 SummerPubMedCrossRefGoogle Scholar
  30. 30.
    Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC (1997) Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 7(6):564–569PubMedCrossRefGoogle Scholar
  31. 31.
    Knight SM, Ring EFJ, Bhalla AK (1992) Bone mineral density and osteoarthritis. Ann Rheum Dis 51:1025–1026PubMedCrossRefGoogle Scholar
  32. 32.
    Souza ACA, Nakamura T, Shiraki M, Stergiopoulos K, Ouchi Y, Orimo H (1990) Measurements of vertebral body using dual-energy X-ray absorptiometry in lateral projection. In: Christiansen C, Overgaard K (eds) Osteoporosis 1990. Osteopress APS, Copenhagen, pp 640–642Google Scholar
  33. 33.
    Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD (1993) Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ 307:172–173PubMedGoogle Scholar
  34. 34.
    Rand T, Schneider B, Grampp S, Wunderbaldinger P, Migsits H, Imhof H (1997) Influence of osteophytic size on bone mineral density measured by dual X-ray absorptiometry. Acta Radiol 38(2):210–213PubMedGoogle Scholar
  35. 35.
    Kerr R, Resnick D, Sartoris DJ et al (1986) Computerized tomography of proximal femoral trabecular patterns. J Orthop Res 4:45–56PubMedCrossRefGoogle Scholar
  36. 36.
    Bohr H, Schaadt O (1985) Bone mineral content of the femoral neck and shaft: relation between cortical and trabecular bone. Calcif Tissue Int 37:340–344PubMedCrossRefGoogle Scholar
  37. 37.
    Griffin MG, Rupich RC, Avioli LV, Pacifici R (1991) A comparison of dual energy radiography measurements at the lumbar spine and proximal femur for the diagnosis of osteoporosis. J Clin Endocrinol Metab 73:1164–1169PubMedCrossRefGoogle Scholar
  38. 38.
    Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N (1992) Lateral dual energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res 7:97–101PubMedCrossRefGoogle Scholar
  39. 39.
    Mazess RB, Gifford CA, Bisek JP, Barden HS, Hanson JA (1991) DEXA measurements of spine density in the lateral projection. I. Methodology. Calcif Tissue Int 49:235–239PubMedCrossRefGoogle Scholar
  40. 40.
    Slosman DO, Rizolli R, Donath A, Bonjour J-P (1990) Vertebral bone mineral density measured laterally by dual energy X-ray absorptiometry. Osteoporosis Int 1:23–29CrossRefGoogle Scholar
  41. 41.
    Ito M, Hayashi K, Yamada M, Uetani M, Nakamura T (1993) Relationship of osteophytes to bone mineral density and spinal fracture in men. Radiology 189:497–502PubMedGoogle Scholar
  42. 42.
    Genant HK, Steiger P, Block JE, Glueer CC, Ettinger B, Harris ST (1987) Quantitative computed tomography: update 1987. Calcif Tissue Int 41:179–186PubMedCrossRefGoogle Scholar
  43. 43.
    Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500PubMedCrossRefGoogle Scholar
  44. 44.
    Rosenthal DI, Ganott MA, Wyshak G, Slovik DM, Doppelt SH, Neer RM (1985) Quantitative computed tomography for spinal density measurement factors affecting precision. Invest Radiol 20:306–310PubMedCrossRefGoogle Scholar
  45. 45.
    Firooznia H, Golimbu C, Rafii M, Schwartz MS, Alterman ER (1984) Quantitative computed tomography assessment of spinal trabecular bone. II. In osteoporotic women with and without vertebral fractures. J Comput Tomogr 8:99–103PubMedCrossRefGoogle Scholar
  46. 46.
    Banks LM, Stevenson JC (1986) Modified method of spinal computed tomography for trabecular bone mineral measurements. J Comput Assist Tomogr 10:463–467PubMedCrossRefGoogle Scholar
  47. 47.
    Harma M, Karjalainen P, Hoikka V, Alhava E (1985) Bone density in women with spinal and hip fractures. Acta Orthop Scand 56:380–385PubMedCrossRefGoogle Scholar
  48. 48.
    Slemenda CW, Johnston C Jr (1988) Bone mass measurement: which site to measure? Am J Med 84:643–645PubMedCrossRefGoogle Scholar
  49. 49.
    Schaadt O, Bohr H (1982) Bone mineral by dual photon absorptiometry. Accuracy-precision-sites of measurements. In: Dequeker J, Johnston CC (eds) Non-invasive bone measurements. IRL Press, Oxford, pp 59–72Google Scholar
  50. 50.
    Isaia G, Musetta M, Salamano G, Carlevatto V, Molinatti GM (1988) Diagnostic notes-lumbar BMC reproducibility as evaluated by means of dual photon absorptiometry. Maturitas 10:59–63PubMedCrossRefGoogle Scholar
  51. 51.
    Krolner B (1985) Lumbar spine bone mineral content by photon beam absorptiometry. Dan Med Bull 32:152–170PubMedGoogle Scholar
  52. 52.
    Nilas L, Hassager C, Christiansen C (1988) Long-term precision of dual photon absorptiometry in the lumbar spine in clinical settings. Bone Min 3:305–315Google Scholar
  53. 53.
    Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL (1988) Comparison of dual-energy X-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc 63:1075–1084PubMedGoogle Scholar
  54. 54.
    Pacifici R, Rupich R, Vered I et al (1988) Dual energy radiograph (DER): a preliminary comparative study. Calcif Tissue Int 43:189–191PubMedCrossRefGoogle Scholar
  55. 55.
    Mazess RB, Collick B, Trempe J, Barden HS, Hanson JA (1989) Performance evaluation of a dual-energy X-ray bone densitometer. Calcif Tissue Int 44:228–232PubMedCrossRefGoogle Scholar
  56. 56.
    Slosman D, Rizolli R, Donath A, Bonjour J (1989) Quantitative digital radiography and conventional dual-photon bone densitometry: study of precision at the levels of spine, femoral neck and shaft. J Bone Min Res 4:394Google Scholar
  57. 57.
    Pouilles JM, Tremollieres F, Ribot C (1993) Spine and femur densitometry at the menopause: are both sites necessary in the assessment of the risk of osteoporosis? Calcif Tissue Int 52(5):344–347PubMedCrossRefGoogle Scholar
  58. 58.
    Capaci K, Hepguler S, Argin M, Tas I (2003) Bone mineral density in mild and advanced ankylosing spondylitis. Yonsei Med J 44(3):379–384PubMedGoogle Scholar
  59. 59.
    El Maghraoui A, Do Santos Zounon AA, Jroundi I, Nouijai A, Ghazi M, Achemlal L, Bezza A, Tazzi MA, Abouqual R (2005) Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. Osteoporos Int 16(12):1742–1748PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki T, Nagai H, Yoshida H, Kusumoto A, Ayano H, Kumagai S, Watanabe S, Shibata H, Yasumura S, Haga H (1995) Appropriateness and limitations of bone mineral measurements by DXA (dual energy X-ray absorptiometry) in the elderly: comparison with X-ray findings. Nippon Koshu Eisei Zasshi 42(6):385–397PubMedGoogle Scholar
  61. 61.
    Dequeker J (1985) The relationship between osteoporosis and osteoarthritis. Clin Rheum Dis 11:271–296PubMedGoogle Scholar
  62. 62.
    Gevers G, Dequeker J, Guesens P, Nyssen-Behets C, Dhem A (1989) Physical and histomorphological characteristics of iliac crest bone differs according to the grade of osteoarthritis at the hand. Bone 10:173–177PubMedCrossRefGoogle Scholar
  63. 63.
    Foss MVL, Byers PD (1972) Bone density, osteoarthrosis of the hip and fracture of the upper end of the femur. Ann Rheum Dis 31:259–264PubMedCrossRefGoogle Scholar
  64. 64.
    Roh YS, Dequeker J, Mulier JC (1973) Cortical bone remodeling and bone mass in primary osteoarthritis of the hip. Invest Radiol 8:251–254CrossRefGoogle Scholar
  65. 65.
    Roh YS, Dequeker J, Mulier JC (1974) Trabecular pattern of the upper end of the femur in primary osteoarthrosis and in symptomatic osteoporosis. J Belge Radiol 57:89–94PubMedGoogle Scholar
  66. 66.
    Hayirlioglu D A, Gokaslan H, Cimsit C, Serin NO (2008) The impact of clothing style on bone mineral density among women in Turkey. Rheumatol Int 28:521–525Google Scholar
  67. 67.
    Hayirlioglu A, Gökaslan H, Andaç N (2006) The effect of bilateral oophorectomy on bone mineral density. Rheumatol Int 26(12):1073–1077PubMedCrossRefGoogle Scholar
  68. 68.
    Wientroub S, Papo J, Ashkenazi M, Tardiman R, Weissman SL, Salama R (1982) Osteoarthritis of the hip and fractures of proximal end of the femur. Acta Orthop Scand 53:261–264Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alper Hayirlioglu
    • 1
  • Husnu Gokaslan
    • 2
  • Canan Cimsit
    • 1
  • Begumhan Baysal
    • 1
  1. 1.Department of RadiologyGoztepe Education and Research HospitalIstanbulTurkey
  2. 2.Department of Obstetrics and GynecologyMarmara University HospitalIstanbulTurkey

Personalised recommendations