Rheumatology International

, Volume 28, Issue 6, pp 521–525 | Cite as

The impact of clothing style on bone mineral density among women in Turkey

  • D. Alper Hayirlioglu
  • Husnu Gokaslan
  • Canan Cimsit
  • N. Ozden Serin
Original Article

Abstract

To investigate the effect of veiled clothing style on bone mineral density (BMD). The BMD measurements were performed on the femoral neck and the lumbar spines of adult female population with two different types of clothing taking calcium daily in the normal range according to the proper technique utilizing dual energy X-ray absorptiometry (DEXA). In the lumbar spine measurements, the BMD was measured 1.0020 ± 0.177 gr/cm2 in cases with veiled clothing style while it was measured 1.0793 ± 0.169 gr/cm2 in cases with unveiled clothing style (P = 0.049, t = 1.98). In the femoral neck measurements, the BMD was measured 0.8428 ± 0.146 gr/cm2 in cases with veiled clothing style while it was measured 0.8532 ± 0.177 in cases with unveiled clothing style (P = 0.548, t = 0.457). Although a decrease in BMD values was observed in both regions with veiled clothing style, only the change in the lumbar spine BMD measurements was statistically significant. These findings suggest that the veiled clothing style may have an adverse effect on BMD by interfering with the sun exposure which is believed to have a key role in bone strength.

Keywords

DEXA BMD Turkish women Veiled clothing style 

References

  1. 1.
    Greeenspan A (2000) Orthopedic radiology: apractical approach, 3rd edn. Lippincot Williams and Wilkins, Philadelphia, pp 775–803Google Scholar
  2. 2.
    Ryan PJ (1997) Overview of role of BMD measurements in managing osteoporosis. Semin Nucl Med 27:197–209PubMedCrossRefGoogle Scholar
  3. 3.
    Slemenda CW, Johnston CC (1988) Bone mass measurements: which site to measure? Am J Med 84:643–645PubMedCrossRefGoogle Scholar
  4. 4.
    Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL (1988) Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bpne mineral measurements of lumbar spine. Mayo Clin Proc 63:1075–1084PubMedGoogle Scholar
  5. 5.
    Svendsen OL, Marslew U, Hassager C, Christiansen C (1992) asurements of bone mineral density of the proximal femur by two commercially available dual-energy x-ray absorptiometric systems. Eur J Nucl Med 9:41–46Google Scholar
  6. 6.
    Nelson DA, Brown EB, Flynn MJ, Cody DD,Shaffer S (1991) Comparison of dual photon and dual energy x-ray bone densitometry in a clinical setting. Skelet Radiol 20:591–595CrossRefGoogle Scholar
  7. 7.
    Lenchik L, Rochmis P, Sartoris DJ Persoective (1998) Optimized interpretation and reporting of dual X-ray absorptiometry(DXA) scans. AJR Am J Roentgenol 17:1509–1520Google Scholar
  8. 8.
    Lenchik L, Sartoris SJ (1998) Current concepts in osteroporosis. AJR Am J Roentgenol 168:905–911Google Scholar
  9. 9.
    McCarthy JT, Kumar R (1986) Behavior of the vitamin D endocrin system in the development of renal osteodystrophy. Semin Nephrol 6:21–30PubMedGoogle Scholar
  10. 10.
    Kaplan FS Osteoporosis (1987) Pathophysiology and prevention. Clin Symp 39:1–32PubMedGoogle Scholar
  11. 11.
    Lang P, Steiger P, Faulkner K, Glüer C, Genant H (1991) Osteoporosis: current techniques and recent developments in quantitative bone densitometry. Radiol Clin N Am 29:49–76PubMedGoogle Scholar
  12. 12.
    Murphy MD, Sartoris DJ, Qualle JL, Pathria MN, Martin N (1993) Musculoskeletal manifestations of chronic renal insufficiency. Radiographics 13:357–379Google Scholar
  13. 13.
    Weller M, Edeiken J, Hodes PJ (1968) Renal osteodystrophy. AJR AM J Roentgenol 104:354–363Google Scholar
  14. 14.
    Resnick D, Niwayama G (1988) Parathryoid disorders and renal osteodystrophy. In: Resnick D, Niwayama G (eds). Diagnosis of bone and Joint disorders, vol 4, 2nd edn. WB Saunders, Philadelphia, pp 2219–2285Google Scholar
  15. 15.
    Riggs BL, Wahner HW (1988) Bone densitometry and clinical decision making in osteoporosis. Ann Intern Med 108:293–295PubMedGoogle Scholar
  16. 16.
    Felder M, Haldemann R, Anderhub HP (2000) Value of ultrasound study and dual energy x- ray absorptiometry (DEXA) for assessment of risk of osteoporosis. Schweiz Rundsch Med Prax 89(6):233–239PubMedGoogle Scholar
  17. 17.
    Mazess RB, Barden HS (1989) Bone densitometry for diagnosis and monitoring osteoporosis. Proc Soc Exp Biol Med 191:261–271PubMedGoogle Scholar
  18. 18.
    Mazess RB, Barden H, Ettinger M, Schultz E (1988) Bone density of radius, spine, and proksimal femur in osteoporosis. J Bone Miner Res 3:13–18PubMedGoogle Scholar
  19. 19.
    Mazess RB, Barden HS (1990) Interrelationships among bone densitometry sites in normal young women. Bone Miner 11:347–356PubMedCrossRefGoogle Scholar
  20. 20.
    Caserta D, Delfini R, Moscarini M (1999) Osteoporosis: DEXA versus conventional radiography, comparison of 2 techniques (Preliminary study). Min Ginecol 51(12):471–474Google Scholar
  21. 21.
    Bolanowski M (2000) Bone densitometry: interpretation of single measurement. Pol Merkuriusz Lek 8(47):325–327Google Scholar
  22. 22.
    Genant HK, Faulkner KG, Glüer CC, Engelke K (1993) Bone densitometry: current assessment. Osteoporosis Int1Suppl:S91–S97CrossRefGoogle Scholar
  23. 23.
    Sartoris DJ, Resnick D (1989) Osteoporosis: update on densitometric techniques. J Musculoskelet Med 6:108–123Google Scholar
  24. 24.
    Matkovic V, IIich J, Hsieh L (1993) Influence of age, sex and diet on bone mass and fracture rate. Osteoporosis Int 1(suppl):S20–S22CrossRefGoogle Scholar
  25. 25.
    Genant HK, Block JE, Steiger P, Glueer CC, Ettinger B, Harris ST (1989) Appropriate use of bone densitometry. Radiology 170:817–822PubMedGoogle Scholar
  26. 26.
    Wilson CR, Fogelman I, Blake GM, Rodin A (1991) The effect of positioning on dual energy X-ray bone densitometry of the proxymal femur. Bone Miner 13:69–76PubMedCrossRefGoogle Scholar
  27. 27.
    Mazess RB (1990) Bone densitometry of the axial skeleton. Orthop Clin N Am 21(1):51–63Google Scholar
  28. 28.
    Luckey MM, Meıer DE, Mandeli JP, DaCosta MC, Hubbard ML, Goldsmith SJ (1989) Radial and vertebral bone density in white and black women: evidence for racial differences in premenopausal bone homeostasis. J Clin Endocrinol Metab 69:762–770PubMedGoogle Scholar
  29. 29.
    Pocock NA, Eisman JA, Hopper JL,Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. J Clin Invest 80:706–710PubMedCrossRefGoogle Scholar
  30. 30.
    Perry III HM, Horowitz M, Morley JE et al (1996) Aging and bone metabolism in African American and Caucasian women. J Clin Endocrinol Metab 81:1108–1117PubMedCrossRefGoogle Scholar
  31. 31.
    Mazess RB, Barden HS (1991) Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 53:132–142PubMedGoogle Scholar
  32. 32.
    Grove KA, Londeree BR (1980) Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci.Sports Exerc 12:175–182Google Scholar
  33. 33.
    Carbon RJ (1992) Exercise, amenorrhoea and the skeleton. Br Med Bull 48(3):546–560PubMedGoogle Scholar
  34. 34.
    McCormick DP, Ponder SW, Fawcett HD, Palmer JL (1991) Spinal bone mineral density 335 normal and obese children and adolescents: evidence for ethnic and sex differences. J Bone Miner Res 6:507–513PubMedGoogle Scholar
  35. 35.
    Gilsanz V, Gibbens DT, Roe TF et al (1988) Vertebral bone density in children: effect of puberty. Radiology 66:847–850Google Scholar
  36. 36.
    Kröger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85PubMedCrossRefGoogle Scholar
  37. 37.
    Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB (1992) Bone gain in young adult women. JAMA 268:2403–2408PubMedCrossRefGoogle Scholar
  38. 38.
    Mazess RB, Barden HS, Drinka PJ, Bauwens SF, Orwoll ES, Bell NH (1990) Influence of age and body weight on spine and femur bone mineral density in U.S. white men. J Bone Miner Res 5(6):645–651PubMedGoogle Scholar
  39. 39.
    Barden HS, Mazess EB (1989) Bone densitometry of the appendicular and axial skeleton. Top Geriatr Rehabil 4(2):1–12Google Scholar
  40. 40.
    Cohn SH, Abesamis C, Yasumura S, Aloia JF, Zanzi I, Ellis KJ (1988) Comperative skeletal mass and radial bone mineral content in black and white women. Metabolism 26:171–177CrossRefGoogle Scholar
  41. 41.
    Southard RN, Morris JD, Mahan JD et al (1991) Bone mass in healthy children: measurement with qantitative DXA. Radiology 179:735–738PubMedGoogle Scholar
  42. 42.
    Marcus R, Cann C, Madwig P et al (1985) Menstrual function and bone mass in elite women distance runners: endocrine and metabolic features. Ann Intern Med 102:158–163PubMedGoogle Scholar
  43. 43.
    Slemenda CW, Miller JZ, Reister TK, Hui SL, Jhonston CC Jr (1991) Calcium supplementation enhances bone mineral accretion in growing children. J Bone Miner Res 6(Suppl 1):211. AbstractGoogle Scholar
  44. 44.
    Nordin BEC, Need AG, Bridges A, Horowitz M (1992) Relative contributions of years since menopause, age, and weight to vertebral density in postmenopausal women. J Clin Endocrinol Metab 74:20–23PubMedCrossRefGoogle Scholar
  45. 45.
    Fontova Garrofe R, Gutierrez Fornes C, Broch Montane M, Aguilar Crespillo C, Pujol del Pozo A, Vendrell Ortega J, Richart Jurado C (2000) Polymorphysim of the gene for vitamin D receptor, bone mass, and bone turnover in women with postmenopausal osteoporosis. Rev Clin Esp 200(4):198–202PubMedGoogle Scholar
  46. 46.
    Tremollieres FA, Pouilles JM, Ribot C (1993) Vertebral postmenopausal bone loss is reduced in overweight: a longitudinal study in 155 early postmenopausal women. J Clin Endocrinol Metab 77:683–686PubMedCrossRefGoogle Scholar
  47. 47.
    Lindqist O, Bengtsson C, Hansson T, Jonsson R (1983) Changes in bone mineral content of axial skeleton in relation to aging and the menopause. Scand J Clin Invest 43:333–338CrossRefGoogle Scholar
  48. 48.
    Richelson LS, Wahner HW, Melton LJ, Riggs BL (1984) Relative contributions of aging and estrogen deficiency to postmenapousal bone loss. N Engl J Med 311:1273–1275PubMedCrossRefGoogle Scholar
  49. 49.
    Murphy S, Khaw TK, May H, Compston JE (1994) Milk consumption and bone mineral density in middle aged and elderly women. Br Med J 308:939–941Google Scholar
  50. 50.
    Sandler RB, Slemenda CW, La Porte RE (1985) Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr 42:270–274PubMedGoogle Scholar
  51. 51.
    Matkovic V (1992) Calcium intake and peak bone mass. N Engl J Med 327:119–120PubMedCrossRefGoogle Scholar
  52. 52.
    Johnston CC, Miller JZ, Slemenda CW et al (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82–87PubMedCrossRefGoogle Scholar
  53. 53.
    Boot AM, De Ridder MAJ, Pols HAP, Kreenning EP, De Muinck Keizer-Schrama SMPF 1997 Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 82:57–62PubMedCrossRefGoogle Scholar
  54. 54.
    Ponder SW, McCormick DP, Fawcett HD, Palmer JL, McKernan MG, Bruhart BH (1990) Spinal bone mineral density in children aged 5.00 through 11.99 years. AJDC 144:1346–1348PubMedGoogle Scholar
  55. 55.
    Bell NH, Shary J, Stevens J, Garza M, Gordon L, Edwards S (1991) Demonstrations that bone mass is greater in black than in white children. J Bone Miner Res 6:719–723PubMedGoogle Scholar
  56. 56.
    Specker BL, Brazerol W, Tsang RC, Levin R, Searcy J, Steichen J (1987) Bone mineral content in children 1 to 6 years of age. AJDC 141:343–344PubMedGoogle Scholar
  57. 57.
    Gilsanz V, Roe TF, Mora S, Costın G, Goodmen WG (1991) Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Eng J Med 325:1597–1600CrossRefGoogle Scholar
  58. 58.
    Liel Y, Edwards J, Shary J et al (1988) The effects of race and body habitus on bone mineral density of the radius, hip, and spine in premenopausal women. J Clin Endocrinol Metab 66:1247–1250PubMedGoogle Scholar
  59. 59.
    Pollitzer WS, Anderson JJB (1989) Ethnic and genetic differences in bone mass: a review with a hereditary vs environmental perspective. Am J Clin Nutr 50:1244–1259PubMedGoogle Scholar
  60. 60.
    Lee WTK, Leung SSF, Wang S et al (1994) Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low calcium diet. Am J Clin Nutr 60:744–750PubMedGoogle Scholar
  61. 61.
    Ribot C, Tremollieres F, Pouilles J, Louvet J, Guiraud R (1988) Influence of the menopause and aging on spinal density in French women. Bone Miner 5:89–97PubMedCrossRefGoogle Scholar
  62. 62.
    Stevenson J, Lees B, Devenport M, Cust M, Ganger K (1989) Determinants of bone density in normal women: risk factors for future osteoporosis? Brit Med J 298:924–928PubMedCrossRefGoogle Scholar
  63. 63.
    Sartoris DJ, Resnick D (1989) Dual-energy radiographic absorptiometry for bone densitometry: current status and perspective. AJR 152:241–246PubMedGoogle Scholar
  64. 64.
    Martin TJ, Kong Wah NG, Nicholson GC (1988) The biology of bone. Baillieres Clin Endocrinol Metab 2:1 PubMedCrossRefGoogle Scholar
  65. 65.
    Hui SL, Slemenda CW, Jhonston CC, Appledorn CR (1987) Effects of age and menopause on vertebral bone density. Bone Miner 2:141–146PubMedGoogle Scholar
  66. 66.
    Glastre C, Braillon P, David L, Cochat P,Meunier PJ, Delmas PD (1990) Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 70:1330–1333PubMedGoogle Scholar
  67. 67.
    Lu WP, Briody JN, Ogle GD et al (1994) Bone mineral density of total body, spine ans femoralş neck in children and young adults: a cross sectional and longitudinal study. J Bone Miner Res 9:1451–1458PubMedGoogle Scholar
  68. 68.
    Mazess RB, Whedon GD (1983) Immobilization and bone. Calcif Tissue Int 35:605–612Google Scholar
  69. 69.
    Block JE, Smith R, Glueer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by qantitative computed tomography. J Bone Miner Res 4:249–257PubMedGoogle Scholar
  70. 70.
    Schaadt O, Bohr H (1988) Different trends of age-related diminution of bone mineral content in the lumbar spine, femoral neck, and femoral shaft in women. Calcif Tissue Int 42:71–76PubMedCrossRefGoogle Scholar
  71. 71.
    Mazess RB (1982) On aging bone loss. Clin Orthop Relat Res 165:239–252PubMedGoogle Scholar
  72. 72.
    Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB,Johnston KSA; Melton LJ (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67:328–335PubMedCrossRefGoogle Scholar
  73. 73.
    Hedlund LR, Gallagher JC (1989) The effect of age and menopause on bone mineral density of proxymal femur. J Bone Miner Res 4:639–642PubMedGoogle Scholar
  74. 74.
    DeSimone DP, Stevens J, Edwards J, Shary J, Gordon L, Bell NH (1989) Influence of body habitus and race on bone mineral density of the midradius, hip, and spine in aging women. J Bone Miner Res 4:827–830PubMedCrossRefGoogle Scholar
  75. 75.
    Ribot C, Tremollieres F, Pouilles J,Bonneu M, Germain M, Louvet JP (1988) Obesity and postmenopausal bone loss: the ınfluence of the obesity on vertebral density and bone turnover in postmenopausal women. Bone 8:327–331CrossRefGoogle Scholar
  76. 76.
    Longcope C,Pratt JH, Schneider SH, Fineberg SE (1978) Aromatization of androgens by muscle and adipose tissue in vivo. J Clin Endocrinol Metab 46:146–152PubMedCrossRefGoogle Scholar
  77. 77.
    Alper H, Hüsnü G, Nurten A (2006) The effect of bilateral oopherectomy on bone mineral density.Rheumatol Int 26:1073–1077CrossRefGoogle Scholar
  78. 78.
    Guzel R, Kozanoğlu E, Guler-Uysal F, Soyupak S, Sarpel T (2001) Vitamin D status and bone mineral density of veiled and unveiled Turkish women.J Womens Health Gend Based Med 10(8):765–770PubMedCrossRefGoogle Scholar
  79. 79.
    Sukru H, Ömer I, Filiz C, Bulent K, Kadir B, Fatma B Sevim GA (2005) Subclinical vitamin D deficiency is increased in adolescent girls who wear concealing clothing. J Nutr 135:218–222Google Scholar
  80. 80.
    Deng X, Liao E, Wu X, Zhou E, Chao C, Wu H (1997) Evaluation of optimal measuring site and index by QDR 4500A for postmenopausal bone loss. Hunan I Ko Ta Hsueh Hsueh Pao 22(2):141–144PubMedGoogle Scholar
  81. 81.
    Civitelli R, Gonnelli S, Zacchei F et al (1988) Bone turnover in postmenopausal osteoporosis. J Clin Invest 82:1268–1274PubMedCrossRefGoogle Scholar
  82. 82.
    Yılmaz N, Bayram M, Erbağcı AB, Kilincer MS (1999) Diagnostic value of biochemical markers of bone turnover and postmenopausal osteoporosis. Clin Chem Lab Med 37(2):137–143PubMedCrossRefGoogle Scholar
  83. 83.
    Marcus R (1996) The nature of osteoprosis. J Clin Endocrinol Metab 8(1):1–5CrossRefGoogle Scholar
  84. 84.
    Riggs BL, Melton III LJ (1983) Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 75:899–901PubMedCrossRefGoogle Scholar
  85. 85.
    Matuszkiewicz-Rowinska J, Skorzewska K, Radowicki S, Sokalski A, Niemczyk S, Wardyn K, Wlodarczyk D, Przedlacki J, Puka J, Switalski M, Ostrowski K (1999) The prevention of bone mineral loss with hormonal replacement therapy in premenopausal women on dialysis with estrogen deficiency. Pol Arch Med Wewn 102(2):665–670PubMedGoogle Scholar
  86. 86.
    Hahn BH (1988) Osteoporosis: diagnosis and management. Bull Rheum Dis 38(2):1–9PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Alper Hayirlioglu
    • 1
    • 4
  • Husnu Gokaslan
    • 2
    • 5
  • Canan Cimsit
    • 1
    • 6
  • N. Ozden Serin
    • 3
    • 7
  1. 1.Department of RadiologyIstanbul Goztepe Education and Research HospitalIstanbulTurkey
  2. 2.Department of Obstetrics and GynecologyMarmara University School of MedicineIstanbulTurkey
  3. 3.Department of BiochemistryIstanbul Taksim Education and Research HospitalIstanbulTurkey
  4. 4.IstanbulTurkey
  5. 5.IstanbulTurkey
  6. 6.Levent, IstanbulTurkey
  7. 7.Levent, IstanbulTurkey

Personalised recommendations