Rheumatology International

, Volume 28, Issue 2, pp 137–143

Etanercept reduces the serum levels of interleukin-23 and macrophage inflammatory protein-3 alpha in patients with rheumatoid arthritis

  • Yasunori Kageyama
  • Tetsuya Ichikawa
  • Tetsuyuki Nagafusa
  • Eiji Torikai
  • Masahiro Shimazu
  • Akira Nagano
Original Article

Abstract

The purpose of this study was to analyze the effect of the soluble TNF-α receptor etanercept on the serum levels of IL-16, IL-17, IL-23, and macrophage inflammatory protein-3α (MIP-3α) in rheumatoid arthritis (RA) patients. Twenty-two patients with RA were administered etanercept once or twice a week for more than 6 months, and we evaluated clinical and laboratory parameters and serum levels of IL-16, IL-17, IL-23, and MIP-3α at the baseline and at 3 and 6 months. Additionally, the production of IL-23 and MIP-3α of cultured synovial cells stimulated with TNF-α from RA patients was determined by ELISA. We also used ELISA kits to determine synovial fluid (SF) levels of IL-17, IL-23, and MIP-3α in patients with RA, osteoarthritis (OA), pseudogouty arthritis (PGA), and gouty arthritis (GA). A significant decrease in serum levels of IL-23 and MIP-3α was observed at 3 and 6 months after initial treatment of etanercept. TNF-α induced MIP-3α but not IL-23 production in cultured synovial cells from RA patients. SF levels of IL-17, IL-23, and MIP-3α in RA patients showed significantly higher levels than those of OA, PGA, and GA patients. This study demonstrated that the reduction of IL-23 and MIP-3α production in RA patients was a newly determined function of etanercept

Keywords

Etanercept Rheumatoid arthritis IL-23 MIP-3α 

References

  1. 1.
    Arend WP, Dayer J-M (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 38:151–160PubMedCrossRefGoogle Scholar
  2. 2.
    Maini RN, Taylor PC (2000) Anti-cytokine therapy for rheumatoid arthritis. Annu Rev Med 51:207–229PubMedCrossRefGoogle Scholar
  3. 3.
    Woo CH, Kim TH, Choi JA, Ryu HC, Lee JE, You HJ, Bae YS, Kim JH (2006) Inhibition of receptor internalization attenuates the TNF alpha-induced ROS generation in non-phagocytic cells. Biochem Biophys Res Commun 351:972–978PubMedCrossRefGoogle Scholar
  4. 4.
    Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, Nakano H (2003) NF-kappa B inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909PubMedCrossRefGoogle Scholar
  5. 5.
    Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41:1258–1265PubMedCrossRefGoogle Scholar
  6. 6.
    Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196PubMedCrossRefGoogle Scholar
  7. 7.
    Pittoni V, Bombardieri M, Spinelli FR, Scrivo R, Alessandri C, Conti F, Spadaro A, Valesini G (2002) Anti-tumour necrosis factor (TNF) alpha treatment of rheumatoid arthritis (infliximab) selectively down regulates the production of interleukin (IL) 18 but not of IL12 and IL13. Ann Rheum Dis 61:723–725PubMedCrossRefGoogle Scholar
  8. 8.
    Klimiuk PA, Sierakowski S, Domyslawska I, Chwiecko J (2004) Effect of repeated infliximab therapy on serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with rheumatoid arthritis. J Rheumatol 31:238–242PubMedGoogle Scholar
  9. 9.
    Kageyama Y, Takahashi M, Torikai E, Suzuki M, Ichikawa T, Nagafusa T, Koide Y, Nagano A (2007) Treatment with anti-TNF-alpha antibody infliximab reduces serum IL-15 levels in patients with rheumatoid arthritis. Clin Rheumatol 26:505–509PubMedCrossRefGoogle Scholar
  10. 10.
    Torikai E, Kageyama Y, Suzuki M, Ichikawa T, Nagano A (2007) The effect of infliximab on chemokines in patients with rheumatoid arthritis. Clin Rheumatol 26:1088–1093PubMedCrossRefGoogle Scholar
  11. 11.
    Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR (2000) Macrophages in rheumatoid arthritis. Arthritis Res 2:189–202PubMedCrossRefGoogle Scholar
  12. 12.
    Szekanecz Z, Kim J, Koch AE (2003) Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol 15:15–21PubMedCrossRefGoogle Scholar
  13. 13.
    Dieu-Nosjean MC, Massacrier C, Homey B, Vanbervliet B, Pin JJ, Vicari A, Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, Caux C (2000) Macrophage inflammatory protein 3 alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192:705–718PubMedCrossRefGoogle Scholar
  14. 14.
    Kleeff J, Kusama T, Rossi DL, Ishiwata T, Maruyama H, Friess H, Buchler MW, Zlotnik A, Korc M (1999) Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int J Cancer 81:650–657PubMedCrossRefGoogle Scholar
  15. 15.
    Schutyser E, Struyf S, Menten P, Lenaerts JP, Conings R, Put W, Wuyts A, Proost P, Van Damme J (2000) Regulated production and molecular diversity of human liver and activation-regulated chemokine/macrophage inflammatory protein-3 alpha from normal and transformed cells. J Immunol 165:4470–4477PubMedGoogle Scholar
  16. 16.
    Chabaud M, Page G, Miossec P (2001) Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3 alpha production in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. J Immunol 167:6015–6020PubMedGoogle Scholar
  17. 17.
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957PubMedCrossRefGoogle Scholar
  18. 18.
    Gottlieb AB, Chamian F, Masud S, Cardinale I, Abello MV, Lowes MA, Chen F, Magliocco M, Krueger JG (2005) TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol 175:2721–2729PubMedGoogle Scholar
  19. 19.
    Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB, Jin HT, Min SY, Ju JH, Park KS, Cho YG, Yoon CH, Park SH, Sung YC, Kim HY (2006) STAT3 and NF-B signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 176:5652–5661PubMedGoogle Scholar
  20. 20.
    Hoeve MA, Savage ND, de Boer T, Langenberg DM, de Waal Malefyt R, Ottenhoff TH, Verreck FA (2006) Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol 36:661–670PubMedCrossRefGoogle Scholar
  21. 21.
    Glabinski AR, Bielecki B, Kawczak JA, Tuohy VK, Selmaj K, Ransohoff RM (2004) Treatment with soluble tumor necrosis factor receptor (sTNFR):Fc/p80 fusion protein ameliorates relapsing-remitting experimental autoimmune encephalomyelitis and decreases chemokine expression. Autoimmunity 37:465–471PubMedCrossRefGoogle Scholar
  22. 22.
    Madhusudan S, Foster M, Muthuramalingam SR, Braybrooke JP, Wilner S, Kaur K, Han C, Hoare S, Balkwill F, Talbot DC, Ganesan TS, Harris AL (2004) A phase II study of etanercept (Enbrel), a tumor necrosis factor alpha inhibitor in patients with metastatic breast cancer. Clin Cancer Res 10:6528–6534PubMedCrossRefGoogle Scholar
  23. 23.
    Catrina AI, Lampa J, Ernestam S, af Klint E, Bratt J, Klareskog L, Ulfgren AK (2002) Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford) 41:484–489CrossRefGoogle Scholar
  24. 24.
    Kikly K, Liu L, Na S, Sedgwick JD (2006) The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation. Curr Opin Immunol 18:670–675PubMedCrossRefGoogle Scholar
  25. 25.
    Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L, Hunter CA, Kastelein RA, Cua DJ (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326PubMedCrossRefGoogle Scholar
  26. 26.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRefGoogle Scholar
  27. 27.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352PubMedCrossRefGoogle Scholar
  28. 28.
    Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42:963–970PubMedCrossRefGoogle Scholar
  29. 29.
    Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, Maslinski W (2000) High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 164:2832–2838PubMedGoogle Scholar
  30. 30.
    Happel KI, Zheng M, Young E, Quinton LJ, Lockhart E, Ramsay AJ, Shellito JE, Schurr JR, Bagby GJ, Nelson S, Kolls JK (2003) Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 170:4432–4436PubMedGoogle Scholar
  31. 31.
    Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D (2004) Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J 18:1318–1320PubMedGoogle Scholar
  32. 32.
    Lee HJ, Choi SC, Lee MH, Oh HM, Choi EY, Choi EJ, Yun KJ, Seo GS, Kim SW, Lee JG, Han WC, Park KI, Jun CD (2005) Increased expression of MIP-3alpha/CCL20 in peripheral blood mononuclear cells from patients with ulcerative colitis and its down-regulation by sulfasalazine and glucocorticoid treatment. Inflamm Bowel Dis 11:1070–1079PubMedCrossRefGoogle Scholar
  33. 33.
    Baba M, Imai T, Nishimura M, Kakizaki M, Takagi S, Hieshima K, Nomiyama H, Yoshie O (1997) Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem 272:14893–14898PubMedCrossRefGoogle Scholar
  34. 34.
    Power CA, Church DJ, Meyer A, Alouani S, Proudfoot AE, Clark-Lewis I, Sozzani S, Mantovani A, Wells TN (1997) Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3alpha from lung dendritic cells. J Exp Med 186:825–835PubMedCrossRefGoogle Scholar
  35. 35.
    Akahoshi T, Sasahara T, Namai R, Matsui T, Watabe H, Kitasato H, Inoue M, Kondo H (2003) Production of macrophage inflammatory protein 3 alpha (MIP-3alpha) (CCL20) and MIP-3beta (CCL19) by human peripheral blood neutrophils in response to microbial pathogens. Infect Immun 71:524–526PubMedCrossRefGoogle Scholar
  36. 36.
    Vanbervliet B, Homey B, Durand I, Massacrier C, Ait-Yahia S, de Bouteiller O, Vicari A, Caux C (2002) Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur J Immunol 32:231–242PubMedCrossRefGoogle Scholar
  37. 37.
    Greaves DR, Wang W, Dairaghi DJ, Dieu MC, Saint-Vis B, Franz-Bacon K, Rossi D, Caux C, McClanahan T, Gordon S, Zlotnik A, Schall TJ (1997) CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3 alpha and is highly expressed in human dendritic cells. J Exp Med 186:837–844PubMedCrossRefGoogle Scholar
  38. 38.
    Matsui T, Akahoshi T, Namai R, Hashimoto A, Kurihara Y, Rana M, Nishimura A, Endo H, Kitasato H, Kawai S, Takagishi K, Kondo H (2001) Selective recruitment of CCR6-expressing cells by increased production of MIP-3 alpha in rheumatoid arthritis. Clin Exp Immunol 125:155–161PubMedCrossRefGoogle Scholar
  39. 39.
    Szekanecz Z, Strieter RM, Kunkel SL, Koch AE (1998) Chemokines in rheumatoid arthritis. Springer Semin Immunopathol 20:115–132PubMedCrossRefGoogle Scholar
  40. 40.
    Chevrel G, Garnero P, Miossec P (2002) Addition of interleukin-1 (IL1) and IL17 soluble receptors to a tumour necrosis factor soluble receptor more effectively reduces the production of IL6 and macrophage inhibitory protein-3 and increases that of collagen in an in vitro model of rheumatoid synoviocyte activation. Ann Rheum Dis 61:730–733PubMedCrossRefGoogle Scholar
  41. 41.
    Sugita S, Kohno T, Yamamoto K, Imaizumi Y, Nakajima H, Ishimaru T, Matsuyama T (2002) Induction of macrophage-inflammatory protein-3 alpha gene expression by TNF-dependent NF-kappaB activation. J Immunol 168:5621–5628PubMedGoogle Scholar
  42. 42.
    Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, Tonnarelli B, Manferdini C, Facchini A (2007) CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol 210:798–806PubMedCrossRefGoogle Scholar
  43. 43.
    Franz JK, Kolb SA, Hummel KM, Lahrtz F, Neidhart M, Aicher WK, Pap T, Gay RE, Fontana A, Gay S (1998) Interleukin-16, produced by synovial fibroblasts, mediates chemoattraction for CD4+ T lymphocytes in rheumatoid arthritis. Eur J Immunol 28:2661–2671PubMedCrossRefGoogle Scholar
  44. 44.
    Klimiuk PA, Goronzy JJ, Weyand CM (1999) IL-16 as an anti-inflammatory cytokine in rheumatoid synovitis. J Immunol 162:4293–4299PubMedGoogle Scholar
  45. 45.
    Atkins GJ, Haynes DR, Geary SM, Loric M, Crotti TN, Findlay DM (2000) Coordinated cytokine expression by stromal and hematopoietic cells during human osteoclast formation. Bone 26:653–661PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yasunori Kageyama
    • 1
  • Tetsuya Ichikawa
    • 1
  • Tetsuyuki Nagafusa
    • 1
  • Eiji Torikai
    • 1
  • Masahiro Shimazu
    • 1
  • Akira Nagano
    • 1
  1. 1.Department of Orthopaedic SurgeryHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations