SosA in Staphylococci: an addition to the paradigm of membrane-localized, SOS-induced cell division inhibition in bacteria

  • Martin S. Bojer
  • Dorte Frees
  • Hanne IngmerEmail author


In all living organisms, genome replication and cell division must be coordinated to produce viable offspring. In the event of DNA damage, bacterial cells employ the SOS response to simultaneously express damage repair systems and halt cell division. Extensive characterization of SOS-controlled cell division inhibition in Escherichia coli has laid the ground for a long-standing paradigm where the cytosolic SulA protein inhibits polymerization of the central division protein, FtsZ, and thereby prevents recruitment of the division machinery at the future division site. Within the last decade, it has become clear that another, likely more general, paradigm exists, at least within the broad group of Gram-positive bacterial species, namely membrane-localized, SOS-induced cell division inhibition. We recently identified such an inhibitor in Staphylococci, SosA, and established a model for SosA-mediated cell division inhibition in Staphylococcus aureus in response to DNA damage. SosA arrests cell division subsequent to the septal localization of FtsZ and later membrane-bound division proteins, while preventing progression to septum closure, leading to synchronization of cells at this particular stage. A membrane-associated protease, CtpA negatively regulates SosA activity and likely allows growth to resume once conditions are favorable. Here, we provide a brief summary of our findings in the context of what already is known for other membrane cell division inhibitors and we emphasize how poorly characterized these intriguing processes are mechanistically. Furthermore, we put some perspective on the relevance of our findings and future developments within the field.


DNA damage SOS response Cell division inhibition Gram-positive Staphylococcus aureus SosA CtpA 



The work in the authors’ lab was supported by grants from the Danish Council for Independent Research (1337-00129 and 1335-00772 to MSB) and the Danish National Research Foundation (DNRF120 to HI). We thank members of our own lab as well as members from the laboratories of Prof. Simon Foster (University of Sheffield) and Prof. Jan-Willem Veening (University of Lausanne) for encouraging discussions and collaboration.


  1. Aarsman ME, Piette A, Fraipont C, Vinkenvleugel TM, Nguyen-Distèche M, den Blaauwen T (2005) Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol 55:1631–1645PubMedCrossRefGoogle Scholar
  2. Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653PubMedCrossRefGoogle Scholar
  3. Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baharoglu Z, Mazel D (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145PubMedCrossRefGoogle Scholar
  5. Bojer MS, Wacnik K, Kjelgaard P, Gallay C, Bottomley AL, Cohn MT, Lindahl G, Frees D, Veening JW, Foster SJ, Ingmer H (2019) SosA inhibits cell division in Staphylococcus aureus in response to DNA damage. Mol Microbiol 112:1116–1130PubMedPubMedCentralCrossRefGoogle Scholar
  6. Buchholz M, Nahrstedt H, Pillukat MH, Deppe V, Meinhardt F (2013) yneA mRNA instability is involved in temporary inhibition of cell division during the SOS response of Bacillus megaterium. Microbiology 159:1564–1574PubMedCrossRefGoogle Scholar
  7. Burby PE, Simmons LA (2020) Regulation of cell division in bacteria by monitoring genome integrity and DNA replication status. J Bacteriol 202:e00408-19CrossRefGoogle Scholar
  8. Burby PE, Simmons ZW, Schroeder JW, Simmons LA (2018) Discovery of a dual protease mechanism that promotes DNA damage checkpoint recovery. PLoS Genet 14:e1007512PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chauhan A, Lofton H, Maloney E, Moore J, Fol M, Madiraju MV, Rajagopalan M (2006) Interference of Mycobacterium tuberculosis cell division by Rv2719c, a cell wall hydrolase. Mol Microbiol 62:132–147PubMedCrossRefGoogle Scholar
  10. Cirz RT, Jones MB, Gingles NA, Minogue TD, Jarrahi B, Peterson SN, Romesberg FE (2007) Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 189:531–539PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cohn MT, Kjelgaard P, Frees D, Penadés JR, Ingmer H (2011) Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology 157:677–684PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cordell SC, Robinson EJ, Lowe J (2003) Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci USA 100:7889–7894PubMedCrossRefPubMedCentralGoogle Scholar
  13. Culyba MJ (2019) Ordering up gene expression by slowing down transcription factor binding kinetics. Curr Genet 65:401–406PubMedCrossRefPubMedCentralGoogle Scholar
  14. den Blaauwen T, Luirink J (2019) Checks and balances in bacterial cell division. MBio 10:e00149–e219Google Scholar
  15. den Blaauwen T, Andreu JM, Monasterio O (2014) Bacterial cell division proteins as antibiotic targets. Bioorg Chem 55:27–38CrossRefGoogle Scholar
  16. Escobar CA, Cross TA (2018) False positives in using the zymogram assay for identification of peptidoglycan hydrolases. Anal Biochem 543:162–166PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gamba P, Veening JW, Saunders NJ, Hamoen LW, Daniel RA (2009) Two-step assembly dynamics of the Bacillus subtilis divisome. J Bacteriol 191:4186–4194PubMedPubMedCentralCrossRefGoogle Scholar
  18. Henrikus SS, van Oijen AM, Robinson A (2018) Specialised DNA polymerases in Escherichia coli: roles within multiple pathways. Curr Genet 64:1189–1196PubMedCrossRefPubMedCentralGoogle Scholar
  19. Higashitani A, Higashitani N, Horiuchi K (1995) A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. Biochem Biophys Res Commun 209:198–204PubMedCrossRefPubMedCentralGoogle Scholar
  20. Huisman O, D'Ari R (1981) An inducible DNA replication-cell division coupling mechanism in E. coli. Nature 290:797–799PubMedCrossRefPubMedCentralGoogle Scholar
  21. Huisman O, D'Ari R, Gottesman S (1984) Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc Natl Acad Sci USA 81:4490–4494PubMedCrossRefPubMedCentralGoogle Scholar
  22. Kawai Y, Moriya S, Ogasawara N (2003) Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 47:1113–1122PubMedCrossRefPubMedCentralGoogle Scholar
  23. Kelley WL (2006) Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 62:1228–1238PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kreuzer KN (2013) DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 5:a012674PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lock RL, Harry EJ (2008) Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov 7:324–338PubMedCrossRefPubMedCentralGoogle Scholar
  26. Mizusawa S, Gottesman S (1983) Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci USA 80:358–362PubMedCrossRefGoogle Scholar
  27. Mo AH, Burkholder WF (2010) YneA, an SOS-induced inhibitor of cell division in Bacillus subtilis, is regulated posttranslationally and requires the transmembrane region for activity. J Bacteriol 192:3159–3173PubMedPubMedCentralCrossRefGoogle Scholar
  28. Modell JW, Hopkins AC, Laub MT (2011) A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev 25:1328–1343PubMedPubMedCentralCrossRefGoogle Scholar
  29. Mukherjee A, Cao C, Lutkenhaus J (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci USA 95:2885–2890PubMedCrossRefGoogle Scholar
  30. Ogino H, Teramoto H, Inui M, Yukawa H (2008) DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum. Mol Microbiol 67:597–608PubMedCrossRefGoogle Scholar
  31. Radman M (1975) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A:355–367PubMedGoogle Scholar
  32. Reichmann NT, Tavares AC, Saraiva BM, Jousselin A, Reed P, Pereira AR, Monteiro JM, Sobral RG, VanNieuwenhze MS, Fernandes F, Pinho MG (2019) SEDS-bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus. Nat Microbiol 4:1368–1377PubMedCrossRefGoogle Scholar
  33. Schoemaker JM, Gayda RC, Markovitz A (1984) Regulation of cell division in Escherichia coli: SOS induction and cellular location of the SulA protein, a key to lon-associated filamentation and death. J Bacteriol 158:551–561PubMedPubMedCentralCrossRefGoogle Scholar
  34. Seong IS, Oh JY, Yoo SJ, Seol JH, Chung CH (1999) ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett 456:211–214PubMedCrossRefPubMedCentralGoogle Scholar
  35. Söderström B, Daley DO (2017) The bacterial divisome: more than a ring? Curr Genet 63:161–164PubMedCrossRefPubMedCentralGoogle Scholar
  36. Söderström B, Chan H, Daley DO (2019) Super-resolution images of peptidoglycan remodelling enzymes at the division site of Escherichia coli. Curr Genet 65:99–101PubMedCrossRefPubMedCentralGoogle Scholar
  37. Sonezaki S, Ishii Y, Okita K, Sugino T, Kondo A, Kato Y (1995) Overproduction and purification of SulA fusion protein in Escherichia coli and its degradation by Lon protease in vitro. Appl Microbiol Biotechnol 43:304–309PubMedCrossRefPubMedCentralGoogle Scholar
  38. Taguchi A, Welsh MA, Marmont LS, Lee W, Sjodt M, Kruse AC, Kahne D, Bernhardt TG, Walker S (2019) FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat Microbiol 4:587–594PubMedPubMedCentralCrossRefGoogle Scholar
  39. Trusca D, Scott S, Thompson C, Bramhill D (1998) Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J Bacteriol 180:3946–3953PubMedPubMedCentralCrossRefGoogle Scholar
  40. Vadrevu IS, Lofton H, Sarva K, Blasczyk E, Plocinska R, Chinnaswamy J, Madiraju M, Rajagopalan M (2011) ChiZ levels modulate cell division process in mycobacteria. Tuberculosis (Edinb) 91:S128–135CrossRefGoogle Scholar
  41. van der Veen S, Hain T, Wouters JA, Hossain H, de Vos WM, Abee T, Chakraborty T, Wells-Bennik MH (2007) The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology 153:3593–3607PubMedCrossRefPubMedCentralGoogle Scholar
  42. Wang M, Fang C, Ma B, Luo X, Hou Z (2019) Regulation of cytokinesis: FtsZ and its accessory proteins. Curr Genet. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wu WF, Zhou Y, Gottesman S (1999) Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J Bacteriol 181:3681–3687PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations