Advertisement

TASks for subtelomeres: when nucleosome loss and genome instability are favored

  • Thomas S. van Emden
  • Sigurd BraunEmail author
Mini-Review

Abstract

Chromosome ends are protected from erosion and chromosomal fusions through telomeric repeats and the telomere-binding protein complex shelterin. Imperfect repetitive sequences, known as telomere-associated sequences (TAS), flank the telomeres, yet their function is not well understood. In this perspective, we discuss our recent findings demonstrating that the TAS, in Schizosaccharomyces pombe, are organized into a distinct chromatin domain that is marked by low nucleosome levels and is highly recombinogenic (van Emden et al. in EMBO Rep 20:e47181.  https://doi.org/10.15252/embr.201847181, 2019). Low nucleosome abundance at the TAS is independent of the chromosomal position, but is an intrinsic property of the DNA sequence itself. Critical nucleosome levels are maintained through two heterochromatin complexes recruited by the shelterin subunit Ccq1, which together control gene repression and nucleosome stability. Furthermore, Ccq1 inhibits TAS-facilitated recombination between subtelomeres, yet independently of nucleosome stability. In conclusion, the TAS present a unique chromatin environment causing nucleosome loss and genome instability, which are both counteracted by Ccq1 through independent mechanisms. Given the antagonistic behavior, we hypothesize that Ccq1 co-evolved with the appearance of TAS to regulate nucleosome dynamics and recombination-based telomere maintenance in the absence of telomerase.

Keywords

Subtelomeres Shelterin Nucleosomes Genome stability Heterochromatin 

Notes

Acknowledgements

We thank the members of the Braun Lab for critical reading of this manuscript. This work was supported by grants awarded to S.B. from the German Research Foundation (BR 3511/2-1; SFB 1064-A25) and the European Union Network of Excellence EpiGeneSys (HEALTH-2010-257082).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abreu E, Aritonovska E, Reichenbach P, Cristofari G, Culp B, Terns RM, Lingner J, Terns MP (2010) TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol 30:2971–2982.  https://doi.org/10.1128/MCB.00240-10 CrossRefGoogle Scholar
  2. Ambrosini A, Paul S, Hu S, Riethman H (2007) Human subtelomeric duplicon structure and organization. Genome Biol 8:R151.  https://doi.org/10.1186/gb-2007-8-7-r151 CrossRefGoogle Scholar
  3. Apte MS, Cooper JP (2017) Life and cancer without telomerase: ALT and other strategies for making sure ends (don’t) meet. Crit Rev Biochem Mol Biol 52:57–73.  https://doi.org/10.1080/10409238.2016.1260090 CrossRefGoogle Scholar
  4. Armstrong CA, Moiseeva V, Collopy LC, Pearson SR, Ullah TR, Xi ST, Martin J, Subramaniam S, Marelli S, Amelina H, Tomita K (2018) Fission yeast Ccq1 is a modulator of telomerase activity. Nucleic Acids Res 46:704–716.  https://doi.org/10.1093/nar/gkx1223 CrossRefGoogle Scholar
  5. Baumann P, Cech TR (2000) Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell 11:3265–3275.  https://doi.org/10.1091/mbc.11.10.3265 CrossRefGoogle Scholar
  6. Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292:1171–1175.  https://doi.org/10.1126/science.1060036 CrossRefGoogle Scholar
  7. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309.  https://doi.org/10.1038/nrg2047 CrossRefGoogle Scholar
  8. Chaudari A, Huberman JA (2012) Identification of two telomere-proximal fission yeast DNA replication origins constrained by nearby cis-acting sequences to replicate in late S phase. F1000Res 1:58.  https://doi.org/10.12688/f1000research.1-58.v1 CrossRefGoogle Scholar
  9. Chuang RY, Kelly TJ (1999) The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci USA 96:2656–2661CrossRefGoogle Scholar
  10. Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385:744–747.  https://doi.org/10.1038/385744a0 CrossRefGoogle Scholar
  11. Creamer KM, Job G, Shanker S, Neale GA, Lin Y-C, Bartholomew B, Partridge JF (2014) The Mi-2 homolog Mit1 actively positions nucleosomes within heterochromatin to suppress transcription. Mol Cell Biol 34:2046–2061.  https://doi.org/10.1128/MCB.01609-13 CrossRefGoogle Scholar
  12. de Lange T (2015) A loopy view of telomere evolution. Front Genet 6:321.  https://doi.org/10.3389/fgene.2015.00321 CrossRefGoogle Scholar
  13. De Vries BBA, Winter R, Schinzel A, van Ravenswaaij-Arts C (2003) Telomeres: a diagnosis at the end of the chromosomes. J Med Genet 40:385–398.  https://doi.org/10.1136/jmg.40.6.385 CrossRefGoogle Scholar
  14. Dehé P-M, Cooper JP (2010) Fission yeast telomeres forecast the end of the crisis. FEBS Lett 584:3725–3733.  https://doi.org/10.1016/j.febslet.2010.07.045 CrossRefGoogle Scholar
  15. Duraisingh MT, Horn D (2016) Epigenetic regulation of virulence gene expression in parasitic protozoa. Cell Host Microbe 19:629–640.  https://doi.org/10.1016/j.chom.2016.04.020 CrossRefGoogle Scholar
  16. Harland JL, Chang Y-T, Moser BA, Nakamura TM (2014) Tpz1-Ccq1 and Tpz1-Poz1 interactions within fission yeast shelterin modulate Ccq1 Thr93 phosphorylation and telomerase recruitment. PLoS Genet 10:e1004708.  https://doi.org/10.1371/journal.pgen.1004708 CrossRefGoogle Scholar
  17. Hong E-JE, Villén J, Gerace EL, Gygi SP, Moazed D (2005) A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol 2:106–111CrossRefGoogle Scholar
  18. Horn PJ, Bastie J-N, Peterson CL (2005) A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev 19:1705–1714.  https://doi.org/10.1101/gad.1328005 CrossRefGoogle Scholar
  19. Jain D, Hebden AK, Nakamura TM, Miller KM, Cooper JP (2010) HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467:223–227.  https://doi.org/10.1038/nature09374 CrossRefGoogle Scholar
  20. Jia S, Kobayashi R, Grewal SIS (2005) Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 7:1007–1013.  https://doi.org/10.1038/ncb1300 CrossRefGoogle Scholar
  21. Job G, Brugger C, Xu T, Lowe BR, Pfister Y, Qu C, Shanker S, Baños Sanz JI, Partridge JF, Schalch T (2016) SHREC silences heterochromatin via distinct remodeling and deacetylation modules. Mol Cell 62:207–221.  https://doi.org/10.1016/j.molcel.2016.03.016 CrossRefGoogle Scholar
  22. Johnsson A, Durand-Dubief M, Xue-Franzén Y, Rönnerblad M, Ekwall K, Wright A (2009) HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress. EMBO Rep 10:1009–1014.  https://doi.org/10.1038/embor.2009.127 CrossRefGoogle Scholar
  23. Kanoh J, Sadaie M, Urano T, Ishikawa F (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15:1808–1819.  https://doi.org/10.1016/j.cub.2005.09.041 CrossRefGoogle Scholar
  24. Khair L, Subramanian L, Moser BA, Nakamura TM (2010) Roles of heterochromatin and telomere proteins in regulation of fission yeast telomere recombination and telomerase recruitment. J Biol Chem 285:5327–5337.  https://doi.org/10.1074/jbc.M109.078840 CrossRefGoogle Scholar
  25. Li F, Goto DB, Zaratiegui M, Tang X, Martienssen R, Cande WZ (2005) Two novel proteins, dos1 and dos2, interact with rik1 to regulate heterochromatic RNA interference and histone modification. Curr Biol 15:1448–1457.  https://doi.org/10.1016/j.cub.2005.07.021 CrossRefGoogle Scholar
  26. Maestroni L, Géli V, Coulon S (2018) STEEx, a boundary between the world of quiescence and the vegetative cycle. Curr Genet 64:901–905.  https://doi.org/10.1007/s00294-018-0808-x CrossRefGoogle Scholar
  27. Mason JMO, McEachern MJ (2018) Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability. Curr Genet 64:997–1000.  https://doi.org/10.1007/s00294-018-0822-z CrossRefGoogle Scholar
  28. McEachern MJ, Haber JE (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75:111–135.  https://doi.org/10.1146/annurev.biochem.74.082803.133234 CrossRefGoogle Scholar
  29. Miyoshi T, Kanoh J, Saito M, Ishikawa F (2008) Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320:1341–1344.  https://doi.org/10.1126/science.1154819 CrossRefGoogle Scholar
  30. Moravec M, Wischnewski H, Bah A, Hu Y, Liu N, Lafranchi L, King MC, Azzalin CM (2016) TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep 17:999–1012.  https://doi.org/10.15252/embr.201541708 CrossRefGoogle Scholar
  31. Moser BA, Raguimova ON, Nakamura TM (2015) Ccq1-Tpz1TPP1 interaction facilitates telomerase and SHREC association with telomeres in fission yeast. Mol Biol Cell 26:3857–3866.  https://doi.org/10.1091/mbc.E15-07-0481 CrossRefGoogle Scholar
  32. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959CrossRefGoogle Scholar
  33. Nakamura TM, Cooper JP, Cech TR (1998) Two modes of survival of fission yeast without telomerase. Science 282:493–496CrossRefGoogle Scholar
  34. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334.  https://doi.org/10.1146/annurev.genet.41.110306.130350 CrossRefGoogle Scholar
  35. Riethman H, Ambrosini A, Paul S (2005) Human subtelomere structure and variation. Chromosome Res 13:505–515.  https://doi.org/10.1007/s10577-005-0998-1 CrossRefGoogle Scholar
  36. Sugawara NF (1988) DNA sequences at the telomeres of the fission yeast S. pombe. thesis. Harvard University, CambridgeGoogle Scholar
  37. Sugiyama T, Cam HP, Sugiyama R, Noma K-I, Zofall M, Kobayashi R, Grewal SIS (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128:491–504.  https://doi.org/10.1016/j.cell.2006.12.035 CrossRefGoogle Scholar
  38. Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44:647–659.  https://doi.org/10.1016/j.molcel.2011.08.043 CrossRefGoogle Scholar
  39. Tashiro S, Nishihara Y, Kugou K, Ohta K, Kanoh J (2017) Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis. Nucleic Acids Res 45:10333–10349.  https://doi.org/10.1093/nar/gkx780 CrossRefGoogle Scholar
  40. Thon G, Hansen KR, Altes SP, Sidhu D, Singh G, Verhein-Hansen J, Bonaduce MJ, Klar AJS (2005) The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171:1583–1595.  https://doi.org/10.1534/genetics.105.048298 CrossRefGoogle Scholar
  41. Tomita K (2018) How long does telomerase extend telomeres? Regulation of telomerase release and telomere length homeostasis. Curr Genet 64:1177–1181.  https://doi.org/10.1007/s00294-018-0836-6 CrossRefGoogle Scholar
  42. Tomita K, Cooper JP (2008) Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller. Genes Dev 22:3461–3474.  https://doi.org/10.1101/gad.498608 CrossRefGoogle Scholar
  43. van Emden TS, Forn M, Forné I, Sarkadi Z, Capella M, Martín Caballero L, Fischer-Burkart S, Brönner C, Simonetta M, Toczyski D, Halic M, Imhof A, Braun S (2019) Shelterin and subtelomeric DNA sequences control nucleosome maintenance and genome stability. EMBO Rep 20:e47181.  https://doi.org/10.15252/embr.201847181 CrossRefGoogle Scholar
  44. Wang J, Cohen AL, Letian A, Tadeo X, Moresco JJ, Liu J, Yates JR, Qiao F, Jia S (2016) The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev 30:827–839.  https://doi.org/10.1101/gad.266718.115 CrossRefGoogle Scholar
  45. Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P, Cerrutti L (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880.  https://doi.org/10.1038/nature724 CrossRefGoogle Scholar
  46. Workman JL (2006) Nucleosome displacement in transcription. Genes Dev 20:2009–2017.  https://doi.org/10.1101/gad.1435706 CrossRefGoogle Scholar
  47. Xi L, Fondufe-Mittendorf Y, Xia L, Flatow J, Widom J, Wang J-P (2010) Predicting nucleosome positioning using a duration Hidden Markov Model. BMC Bioinformatics 11:346.  https://doi.org/10.1186/1471-2105-11-346 CrossRefGoogle Scholar
  48. Xin H, Liu D, Wan M, Safari A, Kim H, Sun W, O’Connor MS, Songyang Z (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445:559–562.  https://doi.org/10.1038/nature05469 CrossRefGoogle Scholar
  49. Zhong Z, Shiue L, Kaplan S, de Lange T (1992) A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12:4834–4843CrossRefGoogle Scholar
  50. Zofall M, Smith DR, Mizuguchi T, Dhakshnamoorthy J, Grewal SIS (2016) Taz1-Shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Mol Cell 62:862–874.  https://doi.org/10.1016/j.molcel.2016.04.034 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiological ChemistryBioMedical Center (BMC), Ludwig Maximilians University of MunichMartinsriedGermany
  2. 2.International Max Planck Research School for Molecular and Cellular Life SciencesMartinsriedGermany

Personalised recommendations