Advertisement

An evolving view of copy number variants

  • Stephanie Lauer
  • David GreshamEmail author
Mini-Review

Abstract

Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.

Keywords

Copy number variation Evolution Chemostat Cancer Gene amplification Gene deletion 

Notes

References

  1. Aigner J, Villatoro S, Rabionet R, Roquer J, Jiménez-Conde J, Martí E, Estivill X (2013) A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel butyrophilin-like protein. BMC Genet 14(July):61CrossRefPubMedPubMedCentralGoogle Scholar
  2. Airoldi EM, Miller D, Athanasiadou R, Brandt N, Abdul-Rahman F, Neymotin B, Hashimoto T, Bahmani T, Gresham D (2016) Steady-State and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen. Mol Biol Cell 27(8):1383–1396CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J et al (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439(7078):851–855CrossRefPubMedGoogle Scholar
  4. Anderson RP, Roth JR (1977) Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol 31(1):473–505CrossRefPubMedGoogle Scholar
  5. Arguello J Roman, Chen Y, Yang S, Wang W, Long M (2006) Origination of an X-linked testes chimeric gene by illegitimate recombination in drosophila. PLoS Genet 2(5):e77CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW (2011) Hydroxyurea induces de novo copy number variants in human cells. Proc Natl Acad Sci USA 108(42):17360–17365CrossRefPubMedGoogle Scholar
  7. Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW (2014) Copy number variants are produced in response to low-dose ionizing radiation in cultured cells. Environ Mol Mutagen 55(2):103–113CrossRefPubMedGoogle Scholar
  8. Avise JC, Kitto GB (1973) Phosphoglucose isomerase gene duplication in the bony fishes: an evolutionary history. Biochem Genet 8(2):113–132CrossRefPubMedGoogle Scholar
  9. Bagci O, Kurtgöz S (2015) Amplification of cellular oncogenes in solid tumors. N Am J Med Sci 7(8):341–346CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105(23):7899–7906CrossRefPubMedGoogle Scholar
  11. Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489(7417):513–518CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brewer BJ, Payen C, Raghuraman MK, Dunham MJ (2011) Origin-dependent inverted-repeat amplification: a replication-based model for generating palindromic amplicons. PLoS Genet 7(3):e1002016CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brewer BJ, Payen C, Di Rienzi SC, Higgins MM, Ong G, Dunham MJ, Raghuraman MK (2015) Origin-dependent inverted-repeat amplification: tests of a model for inverted DNA amplification. PLoS Genet 11(12):e1005699CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bridges CB (1936) The Bar ‘GENE’ a duplication. Science 83(2148):210–211CrossRefPubMedGoogle Scholar
  15. Brown CJ, Todd KM, Rosenzweig RF (1998) Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol Biol Evol 15(8):931–942CrossRefPubMedGoogle Scholar
  16. Bussotti G, Gouzelou E, Boite MC, Kherachi I, Spath GF (2018) Leishmania genome dynamics during environmental adaptation reveals strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio 9(6):e01399-18Google Scholar
  17. Caignec L, Cedric CS, Sermon K, De Rycke M, Thienpont B, Debrock S, Staessen C et al (2006) Single-cell chromosomal imbalances detection by array CGH. Nucl Acids Res 34(9):e68CrossRefPubMedGoogle Scholar
  18. Chakraborty M, VanKuren NW, Zhao R, Zhang X, Kalsow S, Emerson JJ (2018) Hidden genetic variation shapes the structure of functional elements in Drosophila. Nat Genet 50(1):20–25CrossRefPubMedGoogle Scholar
  19. Chan YF, Marks ME, Jones FC, Jr GV, Shapiro MD, Brady SD, Southwick AM et al (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963):302–305CrossRefPubMedGoogle Scholar
  20. Chen L, Zhou W, Zhang L, Zhang F (2014) Genome architecture and its roles in human copy number variation. Genom Inf 12(4):136–144CrossRefGoogle Scholar
  21. Chen L, Zhou W, Zhang C, Lupski JR, Jin L, Zhang F (2015) CNV instability associated with DNA replication dynamics: evidence for replicative mechanisms in CNV mutagenesis. Hum Mol Genet 24(6):1574–1583CrossRefPubMedGoogle Scholar
  22. Chen H, Liu H, Qing G (2018) Targeting oncogenic Myc as a strategy for cancer treatment. Signal Trans Target Therap 3(February):5CrossRefGoogle Scholar
  23. Clop A, Vidal O, Amills M (2012) Copy number variation in the genomes of domestic animals. Anim Genet 43(5):503–517CrossRefPubMedGoogle Scholar
  24. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12):938–950CrossRefPubMedGoogle Scholar
  25. Couldrey C, Keehan M, Johnson T, Tiplady K, Winkelman A, Littlejohn MD, Scott A et al (2017) Detection and assessment of copy number variation using PacBio long-read and illumina sequencing in New Zealand dairy cattle. J Dairy Sci 100(7):5472–5478CrossRefPubMedGoogle Scholar
  26. Das AT, Tenenbaum L, Berkhout B (2016) Tet-on systems for doxycycline-inducible gene expression. Curr Gene Ther 16(3):156–167CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dhami MK, Hartwig T, Fukami T (2016) Genetic basis of priority effects: insights from nectar yeast. Proc Biol Sci R Soc 283(1840):20161455.  https://doi.org/10.1098/rspb.2016.1455 CrossRefGoogle Scholar
  28. Dulmage KA, Darnell CL, Vreugdenhil A, Schmid AK (2018) Copy number variation is associated with gene expression change in archaea. Microbial Genom.  https://doi.org/10.1099/mgen.0.000210 CrossRefGoogle Scholar
  29. Ferris SD, Whitt GS (1979) Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12(4):267–317CrossRefPubMedGoogle Scholar
  30. Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42(5):373–397CrossRefPubMedPubMedCentralGoogle Scholar
  31. Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schöpflin R, Kraft K et al (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538(7624):265–269CrossRefPubMedGoogle Scholar
  32. Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harbor Perspect Med 4(6):a014241.  https://doi.org/10.1101/cshperspect.a014241 CrossRefGoogle Scholar
  33. Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42(5):399–435CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gamazon ER, Stranger BE (2015) The impact of human copy number variation on gene expression. Brief Funct Genom 14(5):352–357CrossRefGoogle Scholar
  35. Gamazon ER, Nicolae DL, Cox NJ (2011) A study of CNVs as trait-associated polymorphisms and as expression quantitative trait loci. PLoS Genet 7(2):e1001292CrossRefPubMedPubMedCentralGoogle Scholar
  36. Geiger T, Cox J, Mann M (2010) Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet 6(9):e1001090CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307(5714):1434–1440CrossRefPubMedGoogle Scholar
  38. Greenblum S, Carr R, Borenstein E (2015) Extensive strain-level copy-number variation across human gut microbiome species. Cell 160(4):583–594CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4(12):e1000303CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci USA 107(43):18551–18556CrossRefPubMedGoogle Scholar
  41. Gu S, Yuan B, Campbell IM, Beck CR, Carvalho Claudia M B, Nagamani Sandesh C S, Erez A et al (2015) Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet 24(14):4061–4077CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hansche PE (1975) Gene duplication as a mechanism of genetic adaptation in Saccharomyces cerevisiae. Genetics 79(4):661–674PubMedPubMedCentralGoogle Scholar
  43. Harari Y, Ram Y, Kupiec M (2018) Frequent ploidy changes in growing yeast cultures. Curr Genet 64(5):1001–1004CrossRefPubMedGoogle Scholar
  44. Hartmann FE, Croll D (2017) Distinct trajectories of massive recent gene gains and losses in populations of a microbial eukaryotic pathogen. Mol Biol Evol 34(11):2808–2822CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hastings PJ, Ira G, Lupski JR, Iafrate AJ, Feuk L, Rivera MN, Listewnik ML et al (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5(1):e1000327CrossRefPubMedPubMedCentralGoogle Scholar
  46. Henrichsen CN, Vinckenbosch N, Zöllner S, Chaignat E, Pradervand S, Schütz F, Ruedi M, Kaessmann H, Reymond A (2009) Segmental copy number variation shapes tissue transcriptomes. Nat Genet 41(4):424–429CrossRefPubMedGoogle Scholar
  47. Hong J, Gresham D (2014) Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLoS Genet 10(1):e1004041CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hopkinson DA, Edwards YH, Harris H (1976) The distributions of subunit numbers and subunit sizes of enzymes: a study of the products of 100 human gene loci. Ann Hum Genet 39(4):383–411CrossRefPubMedGoogle Scholar
  49. Horiuchi T, Horiuchi S, Novick A (1963) The genetic basis of hyper-synthesis of beta-galactosidase. Genetics 48:157–169PubMedPubMedCentralGoogle Scholar
  50. Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, Graves-Lindsay TA et al (2017) Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res 27(5):677–685CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci 256(1346):119–124CrossRefGoogle Scholar
  52. Hull RM, Cruz C, Jack CV, Houseley J (2017) Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biol 15(6):e2001333CrossRefPubMedPubMedCentralGoogle Scholar
  53. Itsara A, Hao W, Smith JD, Nickerson DA, Romieu I, London SJ, Eichler EE (2010) De Novo rates and selection of large copy number variation. Genome Res 20(11):1469–1481CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jack CV, Cruz C, Hull RM, Keller MA, Ralser M, Houseley J (2015) Regulation of ribosomal DNA amplification by the TOR pathway. Proc Natl Acad Sci USA 112(31):9674–9679CrossRefPubMedGoogle Scholar
  55. Jensen MK (2018) Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res 18(4):foy039.  https://doi.org/10.1093/femsyr/foy039 CrossRefPubMedCentralGoogle Scholar
  56. Kim S, Cho C-S, Han K, Lee J (2016) Structural variation of alu element and human disease. Genom Inf 14(3):70–77CrossRefGoogle Scholar
  57. Konings P, Vanneste E, Jackmaert S, Ampe M, Verbeke G, Moreau Y, Vermeesch JR, Voet T (2012) Microarray analysis of copy number variation in single cells. Nat Protoc 7(2):281–310CrossRefPubMedGoogle Scholar
  58. Koszul R, Caburet S, Dujon B, Fischer G (2004) Eukaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J 23(1):234–243CrossRefPubMedGoogle Scholar
  59. Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D (2018) Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 16(12):e3000069CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lee JA, Carvalho Claudia M B, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–1247CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5):1012–1025CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lupiáñez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet TIG 32(4):225–237CrossRefPubMedGoogle Scholar
  63. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459–473PubMedPubMedCentralGoogle Scholar
  65. Mansisidor A, Jr TM, Srivastava P, Dartis DD, Delgado AP, Blitzblau HG, Klein H, Hochwagen A (2018) Genomic copy-number loss is rescued by self-limiting production of DNA circles. Mol Cell 72(3):583-93.e4CrossRefGoogle Scholar
  66. Mason Jennifer M O, McEachern MJ (2018) Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability. Curr Genet 64(5):997–1000CrossRefPubMedGoogle Scholar
  67. Mayo S, Monfort S, Roselló M, Orellana C, Oltra S, Caro-Llopis A, Martínez F (2017) Chimeric genes in deletions and duplications associated with intellectual disability. Int J Genom Proteom 2017(May):4798474Google Scholar
  68. McIsaac RS, Gibney PA, Chandran SS, Benjamin KR, Botstein D (2014) Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucl Acids Res 42(6):e48CrossRefPubMedGoogle Scholar
  69. Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, Zabot M-T, Antonarakis SE, Reymond A (2006) Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet 79(2):332–341CrossRefPubMedPubMedCentralGoogle Scholar
  70. Michels E, De Preter K, Van Roy N, Speleman F (2007) Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med 9(September):574CrossRefPubMedGoogle Scholar
  71. Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP, Lupski JR, Reymond A, Walz K (2008) Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. Hum Mol Genet 17(16):2486–2495CrossRefPubMedGoogle Scholar
  72. Ohno S (1970) Evolution by gene duplication. Springer, BerlinCrossRefGoogle Scholar
  73. Payen C, Di Rienzi SC, Ong GT, Pogachar JL, Sanchez JC, Sunshine AB, Raghuraman MK, Brewer BJ, Dunham MJ (2014) The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection. Gene Genomes Genet 4(3):399–409Google Scholar
  74. Pham GM, Newton L, Wiegert-Rininger K, Vaillancourt B, Douches DS, Robin Buell C (2017) Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato. Plant J Cell Mol Biol 92(4):624–637CrossRefGoogle Scholar
  75. Qian Z, Adhya S (2017) DNA repeat sequences: diversity and versatility of functions. Curr Genet 63(3):411–416CrossRefPubMedGoogle Scholar
  76. Ramirez O, Olalde I, Berglund J, Lorente-Galdos B, Hernandez-Rodriguez J, Quilez J, Webster MT et al (2014) analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genom 15(1):465CrossRefGoogle Scholar
  77. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Daniel Andrews T, Fiegler H et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rigau M, Juan D, Valencia A, Rico D (2019) Intronic CNVs and gene expression variation in human populations. PLoS Genet 15(1):e1007902CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S et al (2013) Formation of chimeric genes by copy-number variation as a mutational mechanism in Schizophrenia. Am J Hum Genet 93(4):697–710CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schrider DR, Navarro Fabio C P, Galante Pedro A F, Parmigiani RB, Camargo AA, Hahn MW, de Souza SJ (2013) Gene copy-number polymorphism caused by retrotransposition in humans. PLoS Genet 9(1):e1003242CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schughart K, Kappen C, Ruddle FH (1989) Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc Natl Acad Sci USA 86(18):7067–7071CrossRefPubMedGoogle Scholar
  82. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S et al (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528CrossRefPubMedGoogle Scholar
  83. Shor E, Fox CA, Broach JR (2013) The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet 9(8):e1003680CrossRefPubMedPubMedCentralGoogle Scholar
  84. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sonti RV, Roth JR (1989) Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123(1):19–28PubMedPubMedCentralGoogle Scholar
  86. Spielmann M, Lupiáñez DG, Mundlos S (2018) Structural variation in the 3D genome. Nat Rev Genet 19(7):453–467CrossRefPubMedPubMedCentralGoogle Scholar
  87. Steinrueck M, Guet CC (2017) Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. eLife.  https://doi.org/10.7554/eLife.25100 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Stratton MR, Campbell PJ, Andrew Futreal P (2009) The cancer genome. Nature 458(7239):719–724CrossRefPubMedPubMedCentralGoogle Scholar
  89. Stuber CW, Goodman MM (1983) Inheritance, intracellular localization, and genetic variation of phosphoglucomutase isozymes in maize (Zea mays L.). Biochem Genet 21(7–8):667–689CrossRefPubMedGoogle Scholar
  90. Sturtevant AH (1925) The effects of unequal crossing over at the bar locus in Drosophila. Genetics 10(2):117–147PubMedPubMedCentralGoogle Scholar
  91. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643CrossRefPubMedPubMedCentralGoogle Scholar
  92. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56(4):619–630CrossRefPubMedGoogle Scholar
  93. Tosato V, Sims J, West N, Colombin M, Bruschi CV (2017) Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Curr Genet 63(2):281–292CrossRefPubMedGoogle Scholar
  94. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B et al (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543(7643):122–125CrossRefPubMedPubMedCentralGoogle Scholar
  95. Walsh JB (1995) How often do duplicated genes evolve new functions? Genetics 139(1):421–428PubMedPubMedCentralGoogle Scholar
  96. Walsh B (2003) Population-genetic models of the fates of duplicate genes. Genetica 118(2–3):279–294CrossRefPubMedGoogle Scholar
  97. Wang H, Chai Z, Dan H, Ji Q, Xin J, Zhang C, Zhong J (2019) A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genom 20(1):61CrossRefGoogle Scholar
  98. Wilson TE, Arlt MF, Park SH, Rajendran S, Paulsen M, Ljungman M, Glover TW (2015) Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res 25(2):189–200CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yang L, Lingyang X, Zhou Y, Liu M, Wang L, Kijas JW, Zhang H, Li L, Liu GE (2018) Diversity of copy number variation in a worldwide population of sheep. Genomics 110(3):143–148CrossRefPubMedGoogle Scholar
  100. Zarrei M, MacDonald JR, Merico D, Scherer SW (2015) A copy number variation map of the human genome. Nat Rev Genet 16(3):172–183CrossRefPubMedGoogle Scholar
  101. Zhou B, Ho SS, Zhang X, Pattni R, Haraksingh RR, Urban AE (2018) Whole-genome sequencing analysis of CNV using low-coverage and paired-end strategies is efficient and outperforms array-based CNV analysis. J Med Genet 55(11):735–743CrossRefPubMedGoogle Scholar
  102. Ziv N, Siegal ML, Gresham D (2013) Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy. Mol Biol Evol 30(12):2568–2578CrossRefPubMedPubMedCentralGoogle Scholar
  103. Ziv N, Shuster BM, Siegal ML, Gresham D (2017) Resolving the complex genetic basis of phenotypic variation and variability of cellular growth. Genetics 206(3):1645–1657CrossRefPubMedPubMedCentralGoogle Scholar
  104. Żmieńko A, Samelak A, Kozłowski P, Figlerowicz M (2014) Copy number polymorphism in plant genomes. TAG 127(1):1–18CrossRefPubMedGoogle Scholar
  105. Zuellig MP, Sweigart AL (2018) Gene duplicates cause hybrid lethality between sympatric species of mimulus. PLoS Genet 14(4):e1007130CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Systems GeneticsNew York University Langone HealthNew YorkUSA
  2. 2.Center for Genomics and System Biology, Department of BiologyNew York UniversityNew YorkUSA

Personalised recommendations