Advertisement

Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection

  • Yingzi YunEmail author
  • Xin Zhou
  • Shuai Yang
  • Ya Wen
  • Haixia You
  • Yuru Zheng
  • Justice Norvienyeku
  • Won-Bo ShimEmail author
  • Zonghua WangEmail author
Original Article

Abstract

The soil-borne, asexual fungus Fusarium oxysporum f.sp. lycopersici (Fol) is a causal agent of tomato wilt disease. The infection process of Fol comprises root recognition, adhesion, penetration, colonization of the root cortex and hyphal proliferation within the xylem vessels, which are under the regulation of virulence-involved transcription factors (TFs). In this study, we identified a gene, designated FolCZF1, which encodes a C2H2 TF in Fol. The homologs of FolCzf1 are also known to affect pathogenicity in F. graminearum and Magnaporthe oryzae on wheat and rice, respectively. We learned that FolCZF1 transcript level is upregulated in conidia and early host infection stage, which led us to hypothesize that FolCzf1 is associated with early host infection in Fol. The FolCZF1 deletion mutant (ΔFolCZF1) exhibited defects in growth rate, conidiation, conidia morphology and a complete loss of virulence on tomato root. Further microscopic observation showed that ΔFolCZF1 can penetrate the root but the primary infection hypha cannot extend its colonization inside the host tissue, suggesting that FolCzf1 TF plays an important role in early infection. Fusaric acid, a secondary metabolite produced by Fusarium species, is suggested as a virulence factor in many crop diseases. We found that FolCzf1 plays a critical role in fusaric acid production by regulating the expression of fusaric acid biosynthesis genes. In summary, FolCzf1 is required for conidiation, secondary metabolism, and early host infection in Fol, and we propose that homologs of FolCzf1 are required for early parasitic growth in other plant pathogenic filamentous fungi.

Keywords

Fusarium oxysporum Transcription factor FolCzf1 Virulence Fusaric acid 

Notes

Acknowledgements

This research was supported by the Natural Science Foundation of Fujian Province (2016J01113), Young Teacher Education Research Project of Fujian Province (JAT160178), Fujian Agriculture and Forestry University Outstanding Youth Scientific Research Project (xjq201625) and Natural Science Foundation of China (31601583).

Supplementary material

294_2019_931_MOESM1_ESM.tif (377 kb)
Supplementary material 1 (TIF 376 KB)
294_2019_931_MOESM2_ESM.tif (905 kb)
Supplementary material 2 (TIF 904 KB)
294_2019_931_MOESM3_ESM.tif (375 kb)
Supplementary material 3 (TIF 374 KB)
294_2019_931_MOESM4_ESM.tif (2.4 mb)
Supplementary material 4 (TIF 2419 KB)
294_2019_931_MOESM5_ESM.tif (3.1 mb)
Supplementary material 5 (TIF 3173 KB)
294_2019_931_MOESM6_ESM.docx (20 kb)
Supplementary material 6 (DOCX 19 KB)

References

  1. Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485CrossRefGoogle Scholar
  2. Asuncion Garcia-Sanchez M, Martin-Rodrigues N, Ramos B, de Vega-Bartol JJ, Perlin MH, Diaz-Minguez JM (2010) Fost12: the Fusarium oxysporum homolog of the transcription factor Ste12: is upregulated during plant infection and required for virulence. Fungal Genet Biol 47:216–225CrossRefGoogle Scholar
  3. Bluhm BH, Kim H, Butchko RA, Woloshuk CP (2008) Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1: a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol 9:203–211CrossRefGoogle Scholar
  4. Boenisch MJ, Schafer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110CrossRefGoogle Scholar
  5. Böhm S, Frishman D, Mewes HW (1997) Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25:2464–2469CrossRefGoogle Scholar
  6. Bourett TM, Howard RJ (1990) In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can J Bot 68:329–342CrossRefGoogle Scholar
  7. Brandhoff B, Simon A, Dornieden A, Schumacher J (2017) Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet 63:931–949CrossRefGoogle Scholar
  8. Bravo-Ruiz G, Ruiz-Roldan C, Roncero MI (2013) Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersic. Mol Plant Microbe Interact 26:1054–1067CrossRefGoogle Scholar
  9. Brayer KJ, Kulshreshtha S, Segal DJ (2008) The protein-binding potential of C2H2 zinc finger domains. Cell Biochem Biophys 51:9–19CrossRefGoogle Scholar
  10. Brown DW, Butchko RA, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid fusarin and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532CrossRefGoogle Scholar
  11. Brown DW, Busman M, Proctor RH (2014) Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant Microbe Interact 27:809–823CrossRefGoogle Scholar
  12. Brown DW, Lee SH, Kim LH, Ryu JG, Lee S, Seo Y, Kim YH, Busman M, Yun SH, Proctor RH, Lee T (2015) Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Mol Plant Microbe Interact 28:319–332CrossRefGoogle Scholar
  13. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3:1525–1532CrossRefGoogle Scholar
  14. Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J (2016) Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol 211:1035–1051CrossRefGoogle Scholar
  15. Caracuel Z, Roncero MIG, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A (2003) The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48:765–779CrossRefGoogle Scholar
  16. Chen WQ, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574CrossRefGoogle Scholar
  17. Chumley FG, Valent B (1990) Genetic analysis of melanin deficient non-pathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143CrossRefGoogle Scholar
  18. Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160CrossRefGoogle Scholar
  19. Dai Y, Cao ZY, Huang LH, Liu SX, Shen ZH, Wang YY, Wang H, Zhang H, Li D, Song F (2016) CCR4-Not complex subunit Not2 plays critical roles in vegetative growth conidiation and virulence in watermelon Fusarium wilt pathogen Fusarium oxysporum f. sp niveum. Front Microbiol 7:1449Google Scholar
  20. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:804–804CrossRefGoogle Scholar
  21. Denisov Y, Freeman S, Yarden O (2011) Inactivation of Snt2: a BAH/PHD-containing transcription factor impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum. Mol Plant Pathol 12:449–461CrossRefGoogle Scholar
  22. Di Pietro A. and Roncero MI (1998) Cloning expression and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact 11:91–98CrossRefGoogle Scholar
  23. Ding Z, Li M, Sun F, Xi P, Sun L, Zhang L, Jiang Z (2015) Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. Plos One 10:e0122634CrossRefGoogle Scholar
  24. Di-Pietro A, Garcia-Maceira F, Meglecz E, Roncero M (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1452CrossRefGoogle Scholar
  25. Divon HH, Ziv C, Davydov O, Yarden O, Fluhr R (2006) The global nitrogen regulator FNR1: regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis. Mol Plant Pathol 7:485–497CrossRefGoogle Scholar
  26. Englbrecht CC, Schoof H, Böhm S (2004) Conservation diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. Bmc Genomics 5:39CrossRefGoogle Scholar
  27. Gonzalezcendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA (2016) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol 17:448–463CrossRefGoogle Scholar
  28. Gu Q, Zhang CQ, Liu X, Ma ZH (2015) A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum. Mol Plant Pathol 16:1–13CrossRefGoogle Scholar
  29. Gupta YK, Dagdas YF, Martinez-Rocha AL, Kershaw MJ, Littlejohn GR, Ryder LS, Sklenar J, Menke F, Talbot NJ (2015) Septin-dependent assembly of the exocyst is essential for plant infection by Magnaporthe oryzae. Plant Cell 27:3277–3289CrossRefGoogle Scholar
  30. Imazaki I, Kurahashi M, Iida Y, Tsuge T (2007) Fow2: a ZnII.2Cys6-type transcription regulator controls plant infection of the vascular wilt fungus Fusarium oxysporum. Mol Microbiol 63:737–753CrossRefGoogle Scholar
  31. Islam KT, Bond JP, Fakhoury AM (2017) FvSNF1, the sucrose non-fermenting protein kinase gene of Fusarium virguliforme, is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean. Curr Genet (2017) 63:723CrossRefGoogle Scholar
  32. Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13:399–413CrossRefGoogle Scholar
  33. Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, Ver Loren van Themaat E, van der Does HC, Hacquard S, Stuber K, Will I, Schmalenbach W, Schmelzer E, O’Connell RJ (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8:e1002643CrossRefGoogle Scholar
  34. Kusuya Y, Hagiwara D, Sakai K, Yaguchi T, Gonoi T, Takahashi H (2018) Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus. Curr Genet 63:777–789CrossRefGoogle Scholar
  35. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46CrossRefGoogle Scholar
  36. Lopez-Berges MS, Di Pietro A, Daboussi MJ, Wahab HA, Vasnier C, Roncero MIG, Dufresne M, Hera C (2009) Identification of virulence genes in Fusarium oxysporum f. sp lycopersici by large-scale transposon tagging. Mol Plant Pathol 10:95–107CrossRefGoogle Scholar
  37. Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A (2010) A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22:2459–2475CrossRefGoogle Scholar
  38. Lópezberges MS, Capilla J, Turrà D, Schafferer L, Matthijs S, Jöchl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 24:3805–3822CrossRefGoogle Scholar
  39. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Pub Professional, Ames, IowaCrossRefGoogle Scholar
  40. Lysoe E, Pasquali M, Breakspear A, Kistler HC (2011) The transcription factor FgStuAp influences spore development pathogenicity and secondary metabolism in Fusarium graminearum. Mol Plant Microbe Interact 24:54–67CrossRefGoogle Scholar
  41. Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W (2006) Involvement of trichothecenes in fusarioses of wheat barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461CrossRefGoogle Scholar
  42. Meshi T, Iwabuchi M (1995) Plant transcription factors. Plant Cell Physiol 36:1405–1420Google Scholar
  43. Michielse CB, Martijn R (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324CrossRefGoogle Scholar
  44. Michielse CB, Van WR, Reijnen L, Manders EMM, Boas S, Olivain C, Alabouvette C, Rep M (2009) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. Plos Pathog 5:e1000637CrossRefGoogle Scholar
  45. Nasmith CG, Walkowiak S, Wang L, Leung WWY, Gong YC, Johnston A, Harris LJ, Guttman DS, Subramaniam R (2011) Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. Plos Pathog 7:e1002266CrossRefGoogle Scholar
  46. Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU, Tudzynski B (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762CrossRefGoogle Scholar
  47. Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095CrossRefGoogle Scholar
  48. Pietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325CrossRefGoogle Scholar
  49. Rispail N, Di Pietro A (2009) Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Mol Plant Microbe Interact 22:830–839CrossRefGoogle Scholar
  50. Ruiz-Roldan C, Pareja-Jaime Y, Gonzalez-Reyes JA, G-Roncero MI (2015) The transcription factor con7-1 is a master regulator of morphogenesis and virulence in Fusarium oxysporum. Mol Plant Microbe Interact 28:55–68CrossRefGoogle Scholar
  51. Sarikaya Bayram Ö, Latgé JP, Bayram Ö (2018) MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus. Curr Genet 64:141–146CrossRefGoogle Scholar
  52. Schwechheimer C, Bevan M (1998) The regulation of transcription factor activity in plants. Trends Plant Sci 3:378–383CrossRefGoogle Scholar
  53. Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK, Lee SH, Cho A, Lee S, Kim MG, Kim Y, Kim JE, Kim JC, Choi GJ, Yun SH, Lim JY, Kim M, Lee YH, Choi YD, Lee YW (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus Fusarium graminearum. Plos Pathog 7:e1002310CrossRefGoogle Scholar
  54. Van Dam P, Fokkens L, Schmidt SM, Linmans JH, Kistler HC, Ma LJ, Rep M (2016) Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ Microbiol 18:4087–4102CrossRefGoogle Scholar
  55. Wang Y, Liu WD, Hou ZM, Wang CF, Zhou XY, Jonkers W, Ding S, Kistler HC, Xu JR (2011) A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Mol Plant Microbe Interact 24:118–128CrossRefGoogle Scholar
  56. Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W (2018) The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 64:285–301CrossRefGoogle Scholar
  57. Yu FW, Gu Q, Yun YZ, Yin YN, Xu JR, Shim WB, Ma Z (2014) The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol 203:219–232CrossRefGoogle Scholar
  58. Yun YZ, Liu ZY, Yin YN, Jiang JH, Chen Y, Xu JR, Ma Z (2015) Functional analysis of the Fusarium graminearum phosphatome. New Phytol 207:119–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Fujian Institute for Food and Drug Quality ControlFuzhouChina
  3. 3.Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationUSA
  4. 4.Institute of OceanographyMinjiang UniversityFuzhouChina

Personalised recommendations