Disturbance in biosynthesis of arachidonic acid impairs the sexual development of the onion blight pathogen Stemphylium eturmiunum

  • Yanxia Zhao
  • Qun Wang
  • Shi Wang
  • Xiaoman Liu
  • Jae-HyuK Yu
  • Weifa ZhengEmail author
  • Xiuguo ZhangEmail author
Original Article


The formation of sexual fruiting bodies for plant pathogenic fungi is a key strategy to propagate their progenies upon environmental stresses. Stemphylium eturmiunum is an opportunistic plant pathogen fungus causing blight in onion. This self-fertilizing filamentous ascomycete persists in the soil by forming pseudothecia, the sexual fruiting body which helps the fungus survive in harsh environments. However, the regulatory mechanism of pseudothecial formation remains unknown. To uncover the mechanism for pseudothecial formation so as to find a practical measure to control the propagation of this onion pathogen, we tentatively used DNA methyltransferase inhibitor 5-azacytidine (5-AC) to treat S. eturmiunum. 5-AC treatment silenced the gene-encoding monoacylglycerol lipase (magl) concomitant with the presence of the inheritable fluffy phenotype and defectiveness in pseudothecial development. Moreover, the silence of magl also resulted in a reduction of arachidonic acid (AA) formation from 27 ± 3.1 µg/g to 9.5 ± 1.5 µg/g. To correlate the biosynthesis of AA and pseudothecial formation, we created magl knockdown and overexpression strains. Knockdown of magl reduced AA to 11 ± 2.4 µg/g, which subsequently disabled pseudothecial formation. In parallel, overexpression of magl increased AA to 37 ± 3.4 µg/g, which also impaired pseudothecial formation. Furthermore, exogenous addition of AA to the culture of magl-silenced or magl knockdown strains rescued the pseudothecial formation but failed in the gpr1 knockdown strain of S. eturmiunum, which implicates the involvement of AA in signal transduction via a putative G protein-coupled receptor 1. Thus, AA at a cellular level of 27 ± 3.1 µg/g is essential for sexual development of S. eturmiunum. Disturbance in the biosynthesis of AA by up- and down-regulating the expression of magl disables the pseudothecial development. The specific requirement for AA in pseudothecial development by S. eturmiunum provides a hint to curb this onion pathogen: to impede pseudothecial formation by application of AA.


Stemphylium eturmiunum Sexual development Arachidonic acid Monoacylglycerol lipase G-protein couple receptor 



We thank Jingze Zhang for transcriptome analysis. We also thank Daohong Jiang for providing the plasmid. This work was supported by the National Natural Science Foundation of China (Grant Number: 31230001) for Xiuguo Zhang. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

294_2019_930_MOESM1_ESM.pdf (383 kb)
Supplementary material 1 (PDF 383 KB)
294_2019_930_MOESM2_ESM.pdf (316 kb)
Supplementary material 2 (PDF 315 KB)
294_2019_930_MOESM3_ESM.pdf (853 kb)
Supplementary material 3 (PDF 852 KB)
294_2019_930_MOESM4_ESM.pdf (859 kb)
Supplementary material 4 (PDF 858 KB)


  1. Affeldt KJ, Brodhagen M, Keller NP (2012) Aspergillus oxylipin signaling and quorum sensing pathways depend on g protein-coupled receptors. Toxins (Basel) 4:695–717CrossRefGoogle Scholar
  2. Affeldt KJ, Carrig J, Amare M, Keller NP (2014) Global survey of canonical Aspergillus flavus G protein-coupled receptors. mBio 5:e01501–e01514CrossRefGoogle Scholar
  3. Andersen B, Frisvad JC (2004) Natural occurrence of fungi and fungal metabolites in moldy tomatoes. J Agric Food Chem 52:7507–7513CrossRefGoogle Scholar
  4. Barman A, Tamuli R (2017) The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet 63:861–875CrossRefGoogle Scholar
  5. Barquissau V, Ghandour R, Ailhaud G, Klingenspor M, Langin D, Amri EZ, Pisani D (2017) Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 136:3–11CrossRefGoogle Scholar
  6. Ben-Ami R, Varga J, Lewis RE, May GS, Nierman WC, Kontoyiannis DP (2010) Characterization of a 5-azacytidine-induced developmental Aspergillus fumigatus variant. Virulence 1:164–173CrossRefGoogle Scholar
  7. Bernardi-Wenzel J, Quecine M, Azevedo J, Pamphile J (2016) Agrobacterium-mediated transformation of Fusarium proliferatum. Genet Mol Res. Google Scholar
  8. Bernstein BE, Humphrey EL, Erlich RL, Schneide R, Bouman P, Liu JS, Kouzarides T, Schreiber SL (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 99:8695–8700CrossRefGoogle Scholar
  9. Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356CrossRefGoogle Scholar
  10. Boyce KJ, Cao C, Andrianopoulos A (2016) Two-component signaling regulates osmotic stress adaptation via SskA and the high-osmolarity glycerol MAPK pathway in the human pathogen Talaromyces marneffei. mSphere 1:e00086–e00015CrossRefGoogle Scholar
  11. Brown NA, Reis TF, Ries LNA, Caldana C, Mah JH, Yu JH, Macdonald JM, Goldman GH (2015) G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans. Mol Microbiol 98:420–439CrossRefGoogle Scholar
  12. Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol 65:3668–3673Google Scholar
  13. Calvo AM, Gardner HW, Keller NP (2001) Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem 276:25766–25774CrossRefGoogle Scholar
  14. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304CrossRefGoogle Scholar
  15. Chen L, Luo J, Cui Z, Xue M, Wang L, Zhang X, Pawlowski WP, He Y (2017) ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development. Plant Physiol 174:1795–1806CrossRefGoogle Scholar
  16. Chen L, Tong Q, Zhang C, Ding K (2018) The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Curr Genet. Google Scholar
  17. Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-Octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829CrossRefGoogle Scholar
  18. Ding M, Li J, Fan X, He F, Yu X, Chen L, Zou S, Liang Y, Yu J (2018) Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Curr Genet 64:1057–1069CrossRefGoogle Scholar
  19. Fernandez J, Rivera-vargas L (2008) Leaf blight of onion caused by Pleospora eturmiuna Simm. (teleomorph of Stemphylium eturmiunum) in Puerto Rico. J Agric Univ Puerto Rico 92:235–239Google Scholar
  20. Fernandez M, Soliveri J, Novella IS, Yebra MJ, Barbés C, Sánchez J (1995) Effect of 5-azacytidine and sinefungin on Streptomyces development. Gene 157:221–223CrossRefGoogle Scholar
  21. Filippovich S, Bachurina G, Kritskiĭ M (2004) Effect of 5-azacytidine on the light-sensitive formation of sexual and asexual reproductive structures in wc-1 and wc-2 mutants of Neurospora crassa. Prikl Biokhim Mikrobiol 40:466–471Google Scholar
  22. Fischer GJ, Keller NP (2016) Production of cross-kingdom oxylipins by pathogenic fungi: an update on their role in development and pathogenicity. J Microbiol 54:254–264CrossRefGoogle Scholar
  23. Fox S, Akpinar A, Prabhune A, Friend J, Ratledge C (2000) The biosynthesis of oxylipins of linoleic and arachidonic acids by the sewage fungus Leptomitus lacteus, including the identification of 8R-Hydroxy-9Z,12Z-octadecadienoic acid. Lipids 35:23–30CrossRefGoogle Scholar
  24. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM (2015) Advances in our understanding of oxylipins derived from dietary PUFAs. Adv Nutr 6:513–540CrossRefGoogle Scholar
  25. Goodrich-Tanrikulu M, Howe K, Stafford A, Nelson MA (1998) Changes in fatty acid composition of Neurospora crassa accompany sexual development and ascospore germination. Microbiology 144:1713–1720CrossRefGoogle Scholar
  26. Gu Q, Ji T, Sun X, Huang H, Zhang H, Lu X, Wu L, Huo R, Wu H, Gao X (2017) Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides. FEMS Microbiol Lett. Google Scholar
  27. Herrero AB, López MC, Fernández-Lago L, Domınguez A (1999) Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology 145:2727–2737CrossRefGoogle Scholar
  28. Hong SK, Choi HW, Lee YK, Shim HS, Lee SY (2012) Leaf spot and stem rot on Wilford swallowwort caused by Stemphylium lycopersici in Korea. Mycobiology 40:268–271CrossRefGoogle Scholar
  29. Hsu KL, Tsuboi K, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Cravatt BF, Hodder P, Rosen H (2013) Optimization and characterization of triazole urea inhibitors for abhydrolase domain containing protein 6 (ABHD6). In: Probe Reports from the NIH Molecular Libraries Program [Internet]. National Center for Biotechnology Information (US), Bethesda (MD). Updated 14 Mar 2013
  30. Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C (1997) cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. J Biol Chem 272:27218–27223CrossRefGoogle Scholar
  31. Keller NP (2015) Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol 11:671–677CrossRefGoogle Scholar
  32. Kock JLF, Strauss CJ, Pohl CH, Nigam S (2003) The distribution of 3-hydroxy oxylipins in fungi. Prostaglandins Other Lipid Mediat 71:85–96CrossRefGoogle Scholar
  33. Köhl J, Haas BG, Kastelein P, Rossi V, Waalwijk C (2009) Quantitative detection of pear-pathogenic Stemphylium vesicarium in orchards. Phytopathology 99:1377–1386CrossRefGoogle Scholar
  34. Lambou K, Malagnac F, Barbisan C, Tharreau D, Lebrun MH, Silar P (2008) The crucial role of the Pls1 tetraspanin during ascospore germination in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot Cell 7:1809–1818CrossRefGoogle Scholar
  35. Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ, Liu XS, Lazar MA (2008) PPAR gamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22:2941–2952CrossRefGoogle Scholar
  36. Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452CrossRefGoogle Scholar
  37. Liu J, Cinar R, Xiong K, Godlewski G, Jourdan T, Lin Y, Ntambi JM, Kunos G (2013) Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase. Proc Natl Acad Sci USA 110:18832–18837CrossRefGoogle Scholar
  38. Liu K, Yu Y, Dong A, Shen WH (2017) SET DOMAIN GROUP701 encodes a H3K4-methyltransferase and regulates multiple key processes of rice plant development. New Phytol 215:609–623CrossRefGoogle Scholar
  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Methods. Methods 25:402–408CrossRefGoogle Scholar
  40. Mazur P, Nakanishi K, El-Zayat AAE, Champe SP (1991) Structure and synthesis of sporogenic Psi factors from Aspergillus nidulans. J Chem Soc Chem Commun 20:1486–1487CrossRefGoogle Scholar
  41. Munaron L (2011) Shuffling the cards in signal transduction: calcium, arachidonic acid and mechanosensitivity. World J Biol Chem 2:59–66CrossRefGoogle Scholar
  42. Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol. Google Scholar
  43. Nomura DK, Hudak CSS, Ward AM, Burston JJ, Issa RS, Fisher KJ, Abood ME, Wiley JL, Lichtman AH, Casida JE (2008) Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorg Med Chem Lett 18:5875–5878CrossRefGoogle Scholar
  44. Noverr MC, Erb-Downward JR, Huffnagle GB (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16:517–533CrossRefGoogle Scholar
  45. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36:W423–W426CrossRefGoogle Scholar
  46. Otrubova K, Cravatt BF, Boger DL (2014) Design, synthesis, and characterization of α-ketoheterocycles that additionally target the cytosolic port Cys269 of fatty acid amide hydrolase. J Med Chem 57:1079–1089CrossRefGoogle Scholar
  47. Qin FJ, Sun QW, Huang LM, Chen XS, Zhou DX (2010) Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression. Mol Plant 3:773–782CrossRefGoogle Scholar
  48. Rosen S, Yu JH, Adams TH (1999) The Aspergillus nidulans sfaD gene encodes a G protein beta subunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600CrossRefGoogle Scholar
  49. Scotchie JG, Savaris RF, Martin CE, Young SL (2015) Endocannabinoid regulation in human endometrium across the menstrual cycle. Reprod Sci 22:113–123CrossRefGoogle Scholar
  50. Simmons EG (2001) Perfect states of Stemphylium—IV. Harv Pap Bot 6:199–208Google Scholar
  51. Strassburg K, Huijbrechts AML, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A, Berger R, Brenkman A, Hankemeier T, Duynhoven J et al (2012) Quantitative profiling of oxylipins through comprehensive LC–MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem 404:1413–1426CrossRefGoogle Scholar
  52. Studt L, Humpf HU, Tudzynski B (2013) Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi. PLoS One 8:e58185CrossRefGoogle Scholar
  53. Tamame M, Antequera F, Villanueva J, Santos T (1983a) 5-azacytidine induces heritable biochemical and developmental changes in the fungus Aspergillus niger. Microbiology 129:2585–2594CrossRefGoogle Scholar
  54. Tamame M, Antequera F, Villanueva JR, Santos T (1983b) High-frequency conversion to a “fluffy” developmental phenotype in Aspergillus spp. by 5-azacytidine treatment: evidence for involvement of a single nuclear gene. Mol Cell Biol 3:2287–2297CrossRefGoogle Scholar
  55. Tamame M, Antequera F, Santos E (1988) Developmental characterization and chromosomal mapping of the 5-azacytidine-sensitive fluF locus of Aspergillus nidulans. Mol Cell Biol 8:3043–3050CrossRefGoogle Scholar
  56. Taylor J, Jacobson D, Fisher M (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246CrossRefGoogle Scholar
  57. Tiwari A, Ngiilmei SD, Tamuli R (2018) The NcZrg-17 gene of Neurospora crassa encodes a cation diffusion facilitator transporter required for vegetative development, tolerance to endoplasmic reticulum stress and cellulose degradation under low zinc conditions. Curr Genet 64:811–819CrossRefGoogle Scholar
  58. Tornqvist H, Belfrage P (1976) Purification and some properties of a monoacylglycerol hydrolyzing enzyme of rat adipose tissue. J Biol Chem 251:813–819Google Scholar
  59. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118CrossRefGoogle Scholar
  60. Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353CrossRefGoogle Scholar
  61. Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821CrossRefGoogle Scholar
  62. Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z et al (2018) The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 64:285–301CrossRefGoogle Scholar
  63. Zhang D, Zhao Q, Wu B (2015) Structural studies of G protein-coupled receptors. Mol Cells 38:836–842CrossRefGoogle Scholar
  64. Zhao Y, Shen Y, Yang S, Wang J, Hu Q, Wang Y, He Q (2010) Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Che 285:4355–4365CrossRefGoogle Scholar
  65. Zhao Y, Xi Q, Xu Q, He M, Ding J, Dai Y, Keller NP, Zheng W (2015) Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii. Appl Microbiol Biotechnol 99:4361–4372CrossRefGoogle Scholar
  66. Zhao Y, He M, Ding J, Xi Q, Loake GJ, Zheng W (2016) Regulation of anticancer styrylpyrone biosynthesis in the medicinal mushroom Inonotus obliquus requires thioredoxin mediated transnitrosylation of S-nitrosoglutathione reductase. Sci Rep 6:37601CrossRefGoogle Scholar
  67. Zhao Y, Ding J, Yuan W, Huang J, Huang W, Wang Y, Zheng W (2017) Production of a fungal furocoumarin by a polyketide synthase gene cluster confers the chemoresistance of Neurospora crassa to the predation by fungivorous arthropods. Environ Microbiol 19:3920–3929CrossRefGoogle Scholar
  68. Zhou Y, Shi Y, Xie X, Guo Y, Li B (2011) Leaf spot of spinach caused by Stemphylium spinaciae sp. nov. Mycosystema 30:379–383Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Biology of Vegetable Diseases and Insect Pests of Shandong Province, Department of Plant PathologyShandong Agricultural UniversityTaianChina
  2. 2.Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Department of Life ScienceJiangsu Normal UniversityXuzhouChina
  3. 3.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations