Advertisement

Multifaceted activities of DNA polymerase η: beyond translesion DNA synthesis

  • Narottam Acharya
  • Kodavati Manohar
  • Doureradjou Peroumal
  • Prashant Khandagale
  • Shraddheya Kumar Patel
  • Satya Ranjan Sahu
  • Premlata Kumari
Mini-Review
  • 52 Downloads

Abstract

DNA polymerases are evolved to extend the 3′-OH of a growing primer annealed to a template DNA substrate. Since replicative DNA polymerases have a limited role while replicating structurally distorted template, translesion DNA polymerases mostly from Y-family come to the rescue of stalled replication fork and maintain genome stability. DNA polymerase eta is one such specialized enzyme whose function is directly associated with casual development of certain skin cancers and chemo-resistance. More than 20 years of extensive studies are available to support TLS activities of Polη in bypassing various DNA lesions, in addition, limited but crucial growing evidence also exist to suggest Polη possessing TLS-independent cellular functions. In this review, we have mostly focused on non-TLS activities of Polη from different organisms including our recent findings from pathogenic yeast Candida albicans.

Keywords

Homologous recombination Chromosomal fragile sites Antibody diversification Transcription Germ tube Candida Amphotericin B 

Notes

Acknowledgements

We thank our laboratory colleagues for helpful discussions and critical comments. Special mention to Mr. Sitendra Panda for his technical assistance during the course of the study. Work in NA’s laboratory is supported by Institutional core support, DBT (BT/PR15470/MED/29/997/2015), and SERB (EMR-2016-000640). We apologize that due to space limitation, not all of the work related to this field could be discussed or cited.

References

  1. Arbel-Eden A, Joseph-Strauss D, Masika H, Printzental O, Rachi E, Simchen G (2013) Trans-lesion DNA polymerases may be involved in yeast meiosis G3 3:633–644  https://doi.org/10.1534/g3.113.005603 CrossRefPubMedGoogle Scholar
  2. Bebenek A, Ziuzia-Graczyk I (2018) Fidelity of DNA replication-a matter of proofreading. Current Genet 64:985–996.  https://doi.org/10.1007/s00294-018-0820-1 CrossRefGoogle Scholar
  3. Bebenek K et al (2001) 5′-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science 291:2156–2159.  https://doi.org/10.1126/science.1058386 CrossRefPubMedGoogle Scholar
  4. Bednarek AK et al (2001) WWOX, the FRA16D gene behaves as a suppressor of tumor growth Cancer Res 61:8068–8073PubMedGoogle Scholar
  5. Bergoglio V et al (2013) DNA synthesis by Pol eta promotes fragile site stability by preventing under-replicated DNA in mitosis. J Cell Biol 201:395–408.  https://doi.org/10.1083/jcb.201207066 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23:103–109.  https://doi.org/10.1038/nsmb.3163 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Betous R et al (2009) Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA human cells Mol Carcinog 48:369–378.  https://doi.org/10.1002/mc.20509 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86:417–438.  https://doi.org/10.1146/annurev-biochem-061516-044709 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cho NW, Lampson MA, Greenberg RA (2017) In vivo imaging of DNA double-strand break induced telomere mobility during alternative lengthening of telomeres. Methods 114:54–59.  https://doi.org/10.1016/j.ymeth.2016.07.010 CrossRefPubMedGoogle Scholar
  10. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204.  https://doi.org/10.1016/j.molcel.2010.09.019 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier AM, Kannouche PL (2016) Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated. DNA Nat Commun 7:13326.  https://doi.org/10.1038/ncomms13326 CrossRefPubMedGoogle Scholar
  12. Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation Annu Rev Biochem 76:1–22.  https://doi.org/10.1146/annurev.biochem.76.061705.090740 CrossRefPubMedGoogle Scholar
  13. Dixon MJ, Lahue RS (2002) Examining the potential role of DNA polymerases eta and zeta in triplet repeat instability in yeast DNA Repair 1:763–770CrossRefPubMedGoogle Scholar
  14. Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34:3887–3896.  https://doi.org/10.1093/nar/gkl529 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Enervald E, Lindgren E, Katou Y, Shirahige K, Strom L (2013) Importance of Poleta for damage-induced cohesion reveals differential regulation of cohesion establishment at the break site and genome-wide. PLoS Genet 9:e1003158.  https://doi.org/10.1371/journal.pgen.1003158 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Friedberg EC, Elledge SJ, Lehmann AR, Lindahl T, Muzi-Falconi M (2014) DNA repair, mutagenesis, and other responses to DNA damage. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  17. Gali VK, Balint E, Serbyn N, Frittmann O, Stutz F, Unk I (2017) Translesion synthesis DNA polymerase eta exhibits a specific RNA extension activity and a transcription-associated function. Sci Rep 7:13055.  https://doi.org/10.1038/s41598-017-12915-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garcia-Exposito L et al (2016) Proteomic profiling reveals a specific role for translesion DNA polymerase eta in the alternative lengthening of telomeres. Cell Rep 17:1858–1871.  https://doi.org/10.1016/j.celrep.2016.10.048 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Glazier VE, Krysan DJ (2018) Transcription factor network efficiency in the regulation of Candida albicans biofilms: it is a small world. Curr Genet 64:883–888.  https://doi.org/10.1007/s00294-018-0804-1 CrossRefPubMedGoogle Scholar
  20. Glover TW, Arlt MF, Casper AM, Durkin SG (2005) Mechanisms of common fragile site instability Human Mol Genet 14(Spec No. 2):R197–R205  https://doi.org/10.1093/hmg/ddi265 CrossRefGoogle Scholar
  21. Goodman MF, Woodgate R (2013) Translesion DNA polymerase. Cold Spring Harb Perspect Biol 5:a010363  https://doi.org/10.1101/cshperspect.a010363 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haracska L, Prakash S, Prakash L (2000a) Replication past O(6)-methylguanine by yeast and human DNA polymerase eta Mol Cell Biol 20:8001–8007CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S (2000b) Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nature Genet 25:458–461.  https://doi.org/10.1038/78169 CrossRefPubMedGoogle Scholar
  24. Haracska L, Washington MT, Prakash S, Prakash L (2001) Inefficient bypass of an abasic site by DNA polymerase eta. J Biol Chem 276:6861–6866.  https://doi.org/10.1074/jbc.M008021200 CrossRefPubMedGoogle Scholar
  25. Haracska L, Prakash L, Prakash S (2003) A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes Dev 17:2777–2785.  https://doi.org/10.1101/gad.1146103 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Higa M, Fujita M, Yoshida K (2017) DNA Replication Origins and Fork Progression at Mammalian Telomeres Genes (Basel).  https://doi.org/10.3390/genes8040112 CrossRefGoogle Scholar
  27. Hoeijmakers JH (2009) DNA damage, aging, and cancer N Engl J Med 361:1475–1485.  https://doi.org/10.1056/NEJMra0804615 CrossRefPubMedGoogle Scholar
  28. Hogg M, Sauer-Eriksson AE, Johansson E (2012) Promiscuous DNA synthesis by human DNA polymerase theta. Nucleic Acids Res 40:2611–2622.  https://doi.org/10.1093/nar/gkr1102 CrossRefPubMedGoogle Scholar
  29. Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12:323–328CrossRefPubMedGoogle Scholar
  30. Johnson RE, Kondratick CM, Prakash S, Prakash L (1999a) hRAD30 mutations in the variant form of xeroderma pigmentosum Science 285:263–265CrossRefPubMedGoogle Scholar
  31. Johnson RE, Prakash S, Prakash L (1999b) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase. Poleta Sci 283:1001–1004Google Scholar
  32. Kawamoto T et al (2005) Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20:793–799.  https://doi.org/10.1016/j.molcel.2005.10.016 CrossRefPubMedGoogle Scholar
  33. Madril AC, Johnson RE, Washington MT, Prakash L, Prakash S (2001) Fidelity and damage bypass ability of Schizosaccharomyces pombe Eso1 protein, comprised of DNA polymerase eta and sister chromatid cohesion protein Ctf7. J Biol Chem 276:42857–42862.  https://doi.org/10.1074/jbc.M106917200 CrossRefPubMedGoogle Scholar
  34. Maga G et al (2002) Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis. J Biol Chem 277:48434–48440.  https://doi.org/10.1074/jbc.M206889200 CrossRefPubMedGoogle Scholar
  35. Manohar K, Peroumal D, Acharya N (2018) TLS dependent and independent functions of DNA polymerase eta (Poleta/Rad30) from Pathogenic Yeast Candida albicans. Mol Microbiol 110:707–727.  https://doi.org/10.1111/mmi.14004 CrossRefPubMedGoogle Scholar
  36. Masutani C et al (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700–704.  https://doi.org/10.1038/21447 CrossRefPubMedGoogle Scholar
  37. McGill CB, Shafer BK, Derr LK, Strathern JN (1993) Recombination initiated by double-strand breaks. Curr Genet 23:305–314CrossRefPubMedGoogle Scholar
  38. McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20:783–792.  https://doi.org/10.1016/j.molcel.2005.10.001 CrossRefGoogle Scholar
  39. Miller GR, Sarachek A (1974) Absence of photoreactivating enzyme in Candida albicans. Candida stellatoidea, and Candida tropicalis. Infect Immun 10:398–399PubMedPubMedCentralGoogle Scholar
  40. Minko IG, Washington MT, Prakash L, Prakash S, Lloyd RS (2001) Translesion DNA synthesis by yeast DNA polymerase eta on templates containing N2-guanine adducts of 1,3-butadiene metabolites. J Biol Chem 276:2517–2522.  https://doi.org/10.1074/jbc.M007867200 CrossRefPubMedGoogle Scholar
  41. Minko IG, Washington MT, Kanuri M, Prakash L, Prakash S, Lloyd RS (2003) Translesion synthesis past acrolein-derived DNA adduct, gamma-hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase eta. J Biol Chem 278:784–790.  https://doi.org/10.1074/jbc.M207774200 CrossRefPubMedGoogle Scholar
  42. Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments Microbiology and molecular biology reviews. MMBR 71:13–35.  https://doi.org/10.1128/MMBR.00030-06 CrossRefPubMedGoogle Scholar
  43. Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, Garcia-Gomez S, Chocron S, Blanco L, Mendez J (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 20:1383–1389.  https://doi.org/10.1038/nsmb.2719 CrossRefPubMedGoogle Scholar
  44. Nasmyth K, Haering CH (2009) Cohesin: its roles and mechanisms. Annu Rev Genet 43:525–558.  https://doi.org/10.1146/annurev-genet-102108-134233 CrossRefPubMedGoogle Scholar
  45. Nick McElhinny SA et al (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci USA 107:4949–4954.  https://doi.org/10.1073/pnas.0914857107 CrossRefPubMedGoogle Scholar
  46. Pope-Varsalona H, Liu FJ, Guzik L, Opresko PL (2014) Polymerase eta suppresses telomere defects induced by DNA damaging agents. Nucleic Acids Res 42:13096–13109.  https://doi.org/10.1093/nar/gku1030 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353.  https://doi.org/10.1146/annurev.biochem.74.082803.133250 CrossRefPubMedGoogle Scholar
  48. Rattray AJ, Strathern JN (2005) Homologous recombination is promoted by translesion polymerase poleta. Mol Cell 20:658–659.  https://doi.org/10.1016/j.molcel.2005.11.018 CrossRefPubMedGoogle Scholar
  49. Rechkoblit O et al (2016) Structure and mechanism of human PrimPol, a DNA polymerase with primase activity. Sci Adv 2:e1601317.  https://doi.org/10.1126/sciadv.1601317 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rechkoblit O, Choudhury JR, Buku A, Prakash L, Prakash S, Aggarwal AK (2018) Structural basis for polymerase eta-promoted resistance to the anticancer nucleoside analog cytarabine. Sci Rep 8:12702.  https://doi.org/10.1038/s41598-018-30796-w CrossRefPubMedPubMedCentralGoogle Scholar
  51. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annual Rev Biochem 77:229–257.  https://doi.org/10.1146/annurev.biochem.77.061306.125255 CrossRefGoogle Scholar
  52. Satpati S, Manohar K, Acharya N, Dixit A (2017) Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (eta) in pathogenic yeast Candida albicans. Sci Rep 7:41087.  https://doi.org/10.1038/srep41087 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sebesta M et al (2013) Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair 12:691–698.  https://doi.org/10.1016/j.dnarep.2013.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shiomi Y, Masutani C, Hanaoka F, Kimura H, Tsurimoto T (2007) A second proliferating cell nuclear antigen loader complex, Ctf18-replication factor C, stimulates DNA polymerase eta activity. J Biol Chem 282:20906–20914.  https://doi.org/10.1074/jbc.M610102200 CrossRefPubMedGoogle Scholar
  55. Silverstein TD, Jain R, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2010a) Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase eta. Structure 18:1463–1470.  https://doi.org/10.1016/j.str.2010.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Silverstein TD, Johnson RE, Jain R, Prakash L, Prakash S, Aggarwal AK (2010b) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 465:1039–1043.  https://doi.org/10.1038/nature09104 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stingele J, Habermann B, Jentsch S (2015) DNA-protein crosslink repair: proteases as DNA repair enzymes. Trends Biochem Sci 40:67–71.  https://doi.org/10.1016/j.tibs.2014.10.012 CrossRefPubMedGoogle Scholar
  58. Su Y, Egli M, Guengerich FP (2016) Mechanism of ribonucleotide incorporation by human DNA polymerase eta. J Biol Chem 291:3747–3756.  https://doi.org/10.1074/jbc.M115.706226 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Su Y, Egli M, Guengerich FP (2017) Human DNA polymerase eta accommodates RNA for strand extension. J Biol Chem 292:18044–18051.  https://doi.org/10.1074/jbc.M117.809723 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tanaka K et al (2000) Fission yeast Eso1p is required for establishing sister chromatid cohesion during S phase. Mol Cell Biol 20:3459–3469CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ummat A et al (2012) Structural basis for cisplatin DNA damage tolerance by human polymerase eta during cancer chemotherapy. Nat Struct Mol Biol 19:628–632.  https://doi.org/10.1038/nsmb.2295 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Unk I, Hajdu I, Blastyak A, Haracska L (2010) Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair 9:257–267.  https://doi.org/10.1016/j.dnarep.2009.12.013 CrossRefPubMedGoogle Scholar
  63. Vaisman A, Woodgate R (2018) Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 53:382–402.  https://doi.org/10.1080/10409238.2018.1483889 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Villa-Hernandez S, Bermejo R (2018) Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 64:1005–1013.  https://doi.org/10.1007/s00294-018-0824-x CrossRefPubMedGoogle Scholar
  65. Washington MT, Carlson KD, Freudenthal BD, Pryor JM (2010) Variations on a theme: eukaryotic Y-family DNA polymerases. Biochim et Biophys Acta 1804:1113–1123.  https://doi.org/10.1016/j.bbapap.2009.07.004 CrossRefGoogle Scholar
  66. Wilson TM et al (2005) MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. J Exp Med 201:637–645.  https://doi.org/10.1084/jem.20042066 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yoon JH, Prakash L, Prakash S (2009) Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells. Proc Natl Acad Sci USA 106:18219–18224.  https://doi.org/10.1073/pnas.0910121106 CrossRefPubMedGoogle Scholar
  68. Zeng X, Winter DB, Kasmer C, Kraemer KH, Lehmann AR, Gearhart PJ (2001) DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol 2:537–541.  https://doi.org/10.1038/88740 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Genomic Instability and Diseases, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia

Personalised recommendations