Advertisement

Interactions in the ESCRT-III network of the yeast Saccharomyces cerevisiae

  • Thomas Brune
  • Heike Kunze-Schumacher
  • Ralf Kölling
Original Article
  • 116 Downloads

Abstract

Here, we examine the genetic interactions between ESCRT-III mutations in the yeast Saccharomyces cerevisiae. From the obtained interaction network, we make predictions about alternative ESCRT-III complexes. By the successful generation of an octuple deletion strain using the CRISPR/Cas9 technique, we demonstrate for the first time that ESCRT-III activity as a whole is not essential for the life of a yeast cell. Endosomal sorting complex required for transport (ESCRT)-III proteins are membrane remodeling factors involved in a multitude of cellular processes. There are eight proteins in yeast with an ESCRT-III domain. It is not clear whether the diverse ESCRT-III functions are fulfilled by a single ESCRT-III complex or by different complexes with distinct composition. Genetic interaction studies may provide a hint on the existence of alternative complexes. We performed a genetic mini-array screen by analyzing the growth phenotypes of all pairwise combinations of ESCRT-III deletion mutations under different stress conditions. Our analysis is in line with previous data pointing to a complex containing Did2/CHMP1 and Ist1/IST1. In addition, we provide evidence for the existence of a novel complex consisting of Did2/CHMP1 and Vps2/CHMP2. Some of the interactions on Congo red plates could be explained by effects of ESCRT-III mutations on Rim101 signaling.

Keywords

Yeast genetics ESCRT-III Endosome Membrane remodeling Multivesicular body (MVB) 

Notes

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG) Grant KO-963/8-1.

Supplementary material

294_2018_915_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2564 KB)

References

  1. Allison R, Lumb JH, Fassier C, Connell JW, Ten Martin D, Seaman MN, Hazan J, Reid E (2013) An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J Cell Biol 202:527–543CrossRefGoogle Scholar
  2. Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993CrossRefGoogle Scholar
  3. Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002a) ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev Cell 3:271–282CrossRefGoogle Scholar
  4. Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (2002b) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289CrossRefGoogle Scholar
  5. Bauer I, Brune T, Preiss R, Kölling R (2015) Evidence for a non-endosomal function of the Saccharomyces cerevisiae ESCRT-III like protein Chm7. Genetics 201:1439–1452CrossRefGoogle Scholar
  6. Bodon G, Chassefeyre R, Pernet-Gallay K, Martinelli N, Effantin G, Hulsik DL, Belly A, Goldberg Y, Chatellard-Causse C, Blot B, Schoehn G, Weissenhorn W, Sadoul R (2011) Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J Biol Chem 286:40276–40286CrossRefGoogle Scholar
  7. Dimaano C, Jones CB, Hanono A, Curtiss M, Babst M (2008) Ist1 regulates Vps4 localization and assembly. Mol Biol Cell 19:465–474CrossRefGoogle Scholar
  8. Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534CrossRefGoogle Scholar
  9. Hayashi M, Fukuzawa T, Sorimachi H, Maeda T (2005) Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 25:9478–9490CrossRefGoogle Scholar
  10. Hood-DeGrenier JK (2011) Identification of phosphatase 2A-like Sit4-mediated signalling and ubiquitin-dependent protein sorting as modulators of caffeine sensitivity in S. cerevisiae. Yeast 28:189–204CrossRefGoogle Scholar
  11. Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407CrossRefGoogle Scholar
  12. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155CrossRefGoogle Scholar
  13. Kinner A, Kölling R (2003) The yeast deubiquitinating enzyme Ubp16 is anchored to the outer mitochondrial membrane. FEBS Lett 549:135–140CrossRefGoogle Scholar
  14. Kopecka M, Gabriel M (1992) The influence of congo red on the cell wall and (1,3)-β-D-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158:115–126CrossRefGoogle Scholar
  15. Kullas AL, Li M, Davis DA (2004) Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans. Eukaryot Cell 3:1609–1618CrossRefGoogle Scholar
  16. Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23:677–686CrossRefGoogle Scholar
  17. Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9:1698–1716CrossRefGoogle Scholar
  18. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291CrossRefGoogle Scholar
  19. Li W, Mitchell AP (1997) Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73PubMedPubMedCentralGoogle Scholar
  20. Logg K, Warringer J, Hashemi SH, Kall M, Blomberg A (2008) The sodium pump Ena1p provides mechanistic insight into the salt sensitivity of vacuolar protein sorting mutants. Biochim Biophys Acta 1783:974–984CrossRefGoogle Scholar
  21. Longtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961CrossRefGoogle Scholar
  22. McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG, Naismith TV, Colf LA, Afonine P, Arthur C, Sundquist WI, Hanson PI, Frost A (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548–1551CrossRefGoogle Scholar
  23. Nickerson DP, West M, Odorizzi G (2006) Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J Cell Biol 175:715–720CrossRefGoogle Scholar
  24. Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Updates 10:121–130CrossRefGoogle Scholar
  25. Raymond CK, Howald SI, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389–1402CrossRefGoogle Scholar
  26. Rodrigues J, Lydall D (2018) Cis and trans interactions between genes encoding PAF1 complex and ESCRT machinery components in yeast. Curr Genet 64:1105–1116CrossRefGoogle Scholar
  27. Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J (2005) Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 25:6772–6788CrossRefGoogle Scholar
  28. Rue SM, Mattei S, Saksena S, Emr SD (2008) Novel Ist1-Did2 complex functions at a late step in multivesicular body sorting. Mol Biol Cell 19:475–484CrossRefGoogle Scholar
  29. Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JH (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife 3:e03703.  https://doi.org/10.7554/eLife.03703 CrossRefPubMedCentralGoogle Scholar
  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  31. Scourfield EJ, Martin-Serrano J (2017) Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 45:613–634CrossRefGoogle Scholar
  32. Shim JH, Xiao C, Hayden MS, Lee KY, Trombetta ES, Pypaert M, Nara A, Yoshimori T, Wilm B, Erdjument-Bromage H, Tempst P, Hogan BL, Mellman I, Ghosh S (2006) CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. J Cell Biol 172:1045–1056CrossRefGoogle Scholar
  33. Soreanu I, Hendler A, Dahan D, Dovrat D, Aharoni A (2018) Marker-free genetic manipulations in yeast using CRISPR/CAS9 system. Curr Genet 64:1129–1139CrossRefGoogle Scholar
  34. Teis D, Saksena S, Emr SD (2008) Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15:578–589CrossRefGoogle Scholar
  35. Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C, Stenmark H (2015) Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522:231–235CrossRefGoogle Scholar
  36. Weiß P, Huppert S, Kölling R (2008) ESCRT-III protein Snf7 mediates high-level expression of the SUC2 gene via the Rim101 pathway. Eukaryot Cell 7:1888–1894CrossRefGoogle Scholar
  37. Xiao J, Chen XW, Davies BA, Saltiel AR, Katzmann DJ, Xu Z (2009) Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis. Mol Biol Cell 20:3514–3524CrossRefGoogle Scholar
  38. Xu W, Smith FJ Jr, Subaran R, Mitchell AP (2004) Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell 15:5528–5537CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Lebensmittelwissenschaft und Biotechnologie, Fg. Hefegenetik und Gärungstechnologie (150f)Universität HohenheimStuttgartGermany
  2. 2.Institut für Molekulare MedizinGoethe Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations