Current Genetics

, Volume 65, Issue 2, pp 473–476 | Cite as

Escaping nuclear decay: the significance of mRNA export for gene expression

  • Agnieszka TudekEmail author
  • Manfred Schmid
  • Torben Heick JensenEmail author


In this perspective, we discuss the regulatory impact of nuclear RNA export and decay on messenger RNA (mRNA) functionality. It is well established that control of protein-coding gene expression in eukaryotes employs the regulated production of mRNA, its intra-cellular transfer to cytoplasmic ribosomes and final transcript degradation. Despite a rich body of literature on these events, an involvement of nuclear RNA decay systems remains largely unexplored. Instead, nuclear RNA degradation is often considered a quality control precaution engaged primarily in ridding cells of aberrantly processed transcripts and spurious non-coding RNA. Recent research from human and budding yeast cells, however, demonstrates that even protein-coding transcripts fall prey to nuclear decay and that this is countered by their nuclear export. Here, we outline the potential of nuclear polyA-binding proteins in tuning levels of cellular mRNA to maintain transcript homeostasis.


Nuclear RNA degradation Transcription termination Nuclear RNA export Nab2 PABPN1 


  1. Aguilera A, García-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124. CrossRefGoogle Scholar
  2. Assenholt J, Mouaikel J, Andersen KR, Brodersen DE, Libri D, Jensen TH (2008) Exonucleolysis is required for nuclear mRNA quality control in yeast THO mutants. RNA 14:2305–2313. CrossRefGoogle Scholar
  3. Baejen C, Torkler P, Gressel S, Essig K, Söding J, Cramer P (2014) Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Moll Cell 55:745–757. CrossRefGoogle Scholar
  4. Bahar Halpern K, Caspi I, Lemze D, Levy M, Landen S, Elinav E, Ulitsky I, Itzkovitz S (2015) Nuclear retention of mRNA in mammalian tissues. Cell Rep 13:2653–2662. CrossRefGoogle Scholar
  5. Batisse J, Batisse C, Budd A, Böttcher B, Hurt E (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284:34911–34917. CrossRefGoogle Scholar
  6. Bresson SM, Hunter OV, Hunter AC, Conrad NK (2015) Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet 11(10):e1005610. CrossRefGoogle Scholar
  7. Bresson S, Tuck A, Staneva D, Tollervey D (2017) Nuclear RNA decay pathways aid rapid remodeling of gene expression in yeast. Mol Cell 65:787–800. CrossRefGoogle Scholar
  8. Burkard KT, Butler JS (2000) A nuclear 3′–5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20:604–616CrossRefGoogle Scholar
  9. Domínguez-Sánchez MS, Sáez C, Japón MA, Aguilera A, Luna R (2011) Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer 11:77. CrossRefGoogle Scholar
  10. Dower K, Kuperwasser N, Merrikh H, Rosbash M (2004) A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript. RNA 10:1888–1899CrossRefGoogle Scholar
  11. Fan J, Kuai B, Wang K, Wang L, Wang Y, Wu X, Chi B, Li G, Cheng H (2018) mRNAs are sorted for export or degradation before passing through nuclear speckles. Nucleic Acids Res 46:8404–8416. CrossRefGoogle Scholar
  12. Fox MJ, Gao H, Smith-Kinnaman WR, Liu Y, Mosley AL (2015) The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1–Nab3 pathway. PLoS Genet 11(2):e1004999. CrossRefGoogle Scholar
  13. Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116:63–73CrossRefGoogle Scholar
  14. Gavaldá S, Gallardo M, Luna R, Aguilera A (2013) R-loop mediated transcription-associated recombination in trf4∆ mutants reveals new links between RNA surveillance and genome integrity. PLoS One 8(6):e65541. CrossRefGoogle Scholar
  15. Hackmann A, Wu H, Schneider UM, Meyer K, Jung K, Krebber H (2014) Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nat Commun 25:3123. CrossRefGoogle Scholar
  16. Hammell CM, Gross S, Zenklusen D, Heath CV, Stutz F, Moore C, Cole CN (2002) Coupling of termination, 3′ processing, and mRNA export. Mol Cell Biol 22:6441–6457CrossRefGoogle Scholar
  17. Jimeno S, Rondón AG, Luna R, Aguilera A (2002) The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J 21:3526–3535CrossRefGoogle Scholar
  18. Kuai L, Das B, Sherman F (2005) A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:13962–13967CrossRefGoogle Scholar
  19. Kühn U, Wahle E (2004) Structure and function of poly(A) binding proteins. Biochim Biophys Acta 1678:67–84CrossRefGoogle Scholar
  20. Li Y, Bor YC, Fitzgerald MP, Lee KS, Rekosh D, Hammarskjold ML (2016) An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Mol Biol Cell 27:3903–3912CrossRefGoogle Scholar
  21. Libri D, Dower K, Boulay J, Thomsen R, Rosbash M, Jensen TH (2002) Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol Cell Biol 22:8254–8266CrossRefGoogle Scholar
  22. Lloret-Llinares M, Karadoulama E, Chen Y, Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L, Sandelin A, Jensen TH (2018) The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res. Google Scholar
  23. Meola N, Jensen TH (2017) Targeting the nuclear RNA exosome: poly(A) binding proteins enter the stage. RNA Biol 14:820–826. CrossRefGoogle Scholar
  24. Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, Jensen TH (2016) Identification of a nuclear exosome decay pathway for processed transcripts. Mol Cell 64:520–533. CrossRefGoogle Scholar
  25. Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L (2018) Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet 64:971–983. CrossRefGoogle Scholar
  26. Ogami K, Richard P, Chen Y, Hoque M, Li W, Moresco JJ, Yates JR 3rd, Tian B, Manley JL (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31(3):1257–1271. CrossRefGoogle Scholar
  27. Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, Schierup MH, Jensen TH (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322:1851–1854. CrossRefGoogle Scholar
  28. Satoh R, Matsumura Y, Tanaka A, Takada M, Ito Y, Hagihara K, Inari M, Kita A, Fukao A, Fujiwara T, Hirai S, Tani T, Sugiura R (2017) Spatial regulation of the KH domain RNA-binding protein Rnc1 mediated by a Crm1-independent nuclear export system in Schizosaccharomyces pombe. Mol Microbiol 104:428–448. CrossRefGoogle Scholar
  29. Satoh R, Hagihara K, Sugiura R (2018) Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling. Curr Genet 64:103–108. CrossRefGoogle Scholar
  30. Schmid M, Jensen TH (2018) Controlling nuclear RNA levels. Nat Rev Genet 19:518–529. CrossRefGoogle Scholar
  31. Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH (2015) The nuclear polyA-binding protein Nab2p is essential for mRNA production. Cell Rep 12:128–139. CrossRefGoogle Scholar
  32. Silla T, Karadoulama E, Mąkosa D, Lubas M, Jensen TH (2018) The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts. Cell Rep 23:2199–2210. CrossRefGoogle Scholar
  33. Soucek S, Zeng Y, Bellur DL, Bergkessel M, Morris KJ, Deng Q, Duong D, Seyfried NT, Guthrie C, Staley JP, Fasken MB, Corbett AH (2016) The evolutionarily-conserved polyadenosine RNA binding protein, Nab2, cooperates with splicing machinery to regulate the fate of pre-mRNA. Mol Cell Biol 36:2697–2714. CrossRefGoogle Scholar
  34. Tran EJ, Zhou Y, Corbett AH, Wente SR (2007) The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell 28:850–859CrossRefGoogle Scholar
  35. Tuck AC, Tollervey D (2013) A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154:996–1009. CrossRefGoogle Scholar
  36. Tudek A, Schmid M, Makaras M, Barrass JD, Beggs JD, Jensen TH (2018) A nuclear export block triggers the decay of newly synthesized polyadenylated RNA. Cell Rep 24:2457–2467. CrossRefGoogle Scholar
  37. Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Régnault B, Devaux F, Namane A, Séraphin B, Libri D, Jacquier A (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–737CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
  2. 2.Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations