Advertisement

The Rio1 protein kinases/ATPases: conserved regulators of growth, division, and genomic stability

  • Giovanna Berto
  • Sébastien Ferreira-Cerca
  • Peter De Wulf
Mini-Review

Abstract

The atypical Rio1 protein kinases/ATPases, which exist in most archaea and eukaryotes, have been studied intensely to understand how they promote small ribosomal subunit (SSU) maturation. However, mutant and knockdown phenotypes in various organisms suggested roles in activities beyond SSU biogenesis, including the regulation of cell cycle progression (DNA transcription, replication, condensation, and segregation), cell division, metabolism, physiology, and development. Recent work with budding yeast, indeed, revealed that Rio1 (RIOK1 in metazoans) manages a large signaling network at the protein and gene levels via which it stimulates or restricts growth and division in response to nutrient availability. We examine how these findings translate to human cells and suggest that RIOK1 over-expression or mutations, as observed in primary cancer cells, may cause a mis-regulation of its network, contributing to cancer initiation and progression. We also reflect on how targeting RIOK1 might eradicate hitherto incurable tumors in the clinic.

Keywords

Rio1 RIOK1 RIO kinase Kinase ATPase Ribosome Cancer 

Notes

Acknowledgements

G.B. and P.D.W. acknowledge support from Italian Association for Cancer Research (AIRC) Investigator Grant 13243, and from Intramural Grant 40202054 from the University of Trento. S.F.-C. acknowledges support by Intramural Funds from the Department of Biochemistry III “House of the Ribosome”, German Research Foundation (DFG) Collaborative Research Centre Grant SFB960-AP1, and German Research Foundation Individual Grant (project number: 409198929).

References

  1. Ameismeier M, Cheng J, Berninghausen O, Beckmann R (2018) Visualizing late states of human 40S ribosomal subunit maturation. Nature 558:249–253.  https://doi.org/10.1038/s41586-018-0193-0 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anaya P, Evans SC, Dai C, Lozano G, May GS (1998) Isolation of the Aspergillus nidulans sudD gene and its human homologue. Gene 211:323–329CrossRefPubMedCentralGoogle Scholar
  3. Angermayr M, Bandlow W (1997) The type of basal promoter determines the regulated or constitutive mode of transcription in the common control region of the yeast gene pair GCY1/RIO1. J Biol Chem 272:31630–31635CrossRefPubMedCentralGoogle Scholar
  4. Angermayr M, Bandlow W (2002) RIO1, an extraordinary novel protein kinase. FEBS Lett 524:31–36CrossRefPubMedCentralGoogle Scholar
  5. Angermayr M, Roidl A, Bandlow W (2002) Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression. Mol Microbiol 44:309–324CrossRefPubMedCentralGoogle Scholar
  6. Angermayr M, Schwerdffeger K, Bandlow W (2003) A nucleosome-free dG-dC-rich sequence element promotes constitutive transcription of the essential yeast RIO1 gene. Biol Chem 384:1287–1292.  https://doi.org/10.1515/BC.2003.143 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Angermayr M, Hochleitner E, Lottspeich F, Bandlow W (2007) Protein kinase CK2 activates the atypical Rio1p kinase and promotes its cell-cycle phase-dependent degradation in yeast. FEBS J 274:4654–4667.  https://doi.org/10.1111/j.1742-4658.2007.05993.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350.  https://doi.org/10.1093/nar/gkw408 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272.  https://doi.org/10.1038/nature01279 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baumas K, Soudet J, Caizergues-Ferrer M, Faubladier M, Henry Y, Mougin A (2012) Human RioK3 is a novel component of cytoplasmic pre-40S pre-ribosomal particles. RNA Biol 9:162–174.  https://doi.org/10.4161/rna.18810 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Belhabich-Baumas K, Joret C, Jady BE, Plisson-Chastang C, Shayan R, Klopp C, Henras AK, Henry Y, Mougin A (2017) The Rio1p ATPase hinders premature entry into translation of late pre-40S pre-ribosomal particles. Nucleic Acids Res 45:10824–10836.  https://doi.org/10.1093/nar/gkx734 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322–1324.  https://doi.org/10.1093/bioinformatics/bth070 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dang CV (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med.  https://doi.org/10.1101/cshperspect.a014217 CrossRefPubMedPubMedCentralGoogle Scholar
  14. de la Cruz J, Gomez-Herreros F, Rodriguez-Galan O, Begley V, de la Cruz Munoz-Centeno M, Chavez S (2018) Feedback regulation of ribosome assembly. Curr Genet 64:393-404.  https://doi.org/10.1007/s00294-017-0764-x CrossRefPubMedPubMedCentralGoogle Scholar
  15. Denison SH, Kafer E, May GS (1993) Mutation in the bimD gene of Aspergillus nidulans confers a conditional mitotic block and sensitivity to DNA damaging agents. Genetics 134:1085–1096PubMedPubMedCentralGoogle Scholar
  16. Dhanasekaran N, Premkumar Reddy E (1998) Signaling by dual specificity kinases. Oncogene 17:1447–1455.  https://doi.org/10.1038/sj.onc.1202251 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Esser D, Siebers B (2013) Atypical protein kinases of the RIO family in archaea. Biochem Soc Trans 41:399–404.  https://doi.org/10.1042/BST20120317 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ferreira-Cerca S, Sagar V, Schafer T, Diop M, Wesseling AM, Lu H, Chai E, Hurt E, LaRonde-LeBlanc N (2012) ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit. Nat Struct Mol Biol 19:1316–1323.  https://doi.org/10.1038/nsmb.2403 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ferreira-Cerca S, Kiburu I, Thomson E, LaRonde N, Hurt E (2014) Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res 42:8635–8647.  https://doi.org/10.1093/nar/gku542 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gao Q, Xu S, Zhu X, Wang L, Yang Z, Zhao X (2018) Genome-wide identification and characterization of the RIO atypical kinase family in plants. Genes Genom 40:669–683.  https://doi.org/10.1007/s13258-018-0658-4 CrossRefGoogle Scholar
  21. Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, Grimmler M (2011) RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J Biol Chem 286:1976–1986.  https://doi.org/10.1074/jbc.M110.148486 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hector RD, Burlacu E, Aitken S, Bihan TL, Tuijtel M, Zaplatina A, Cook AG, Granneman S (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res 42:12138–12154.  https://doi.org/10.1093/nar/gku815 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hoffmann L, Schummer A, Reimann J, Haurat MF, Wilson AJ, Beeby M, Warscheid B, Albers SV (2017) Expanding the archaellum regulatory network—the eukaryotic protein kinases ArnC and ArnD influence motility of Sulfolobus acidocaldarius. Microbiologyopen.  https://doi.org/10.1002/mbo3.414 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Holt CL, May GS (1996) An extragenic suppressor of the mitosis-defective bimD6 mutation of Aspergillus nidulans codes for a chromosome scaffold protein. Genetics 142:777–787PubMedPubMedCentralGoogle Scholar
  25. Hong X, Huang H, Qiu X, Ding Z, Feng X, Zhu Y, Zhuo H, Hou J, Zhao J, Cai W, Sha R, Hong X, Li Y, Song H, Zhang Z (2018) Targeting posttranslational modifications of RIOK1 inhibits the progression of colorectal and gastric cancers. Elife.  https://doi.org/10.7554/eLife.29511 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hormann A, Hopfgartner B, Kocher T, Corcokovic M, Krammer T, Reiser C, Bader G, Shi J, Ehrenhofer K, Wohrle S, Schweifer N, Vakoc CR, Kraut N, Pearson M, Petronczki M, Neumuller RA (2018) RIOK1 kinase activity is required for cell survival irrespective of MTAP status. Oncotarget 9:28625–28637.  https://doi.org/10.18632/oncotarget.25586 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Humbard MA, Reuter CJ, Zuobi-Hasona K, Zhou G, Maupin-Furlow JA (2010) Phosphorylation and methylation of proteasomal proteins of the haloarcheon Haloferax volcanii. Archaea.  https://doi.org/10.1155/2010/481725 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Iacovella MG, Golfieri C, Massari LF, Busnelli S, Pagliuca C, Dal Maschio M, Infantino V, Visintin R, Mechtler K, Ferreira-Cerca S, De Wulf P (2015) Rio1 promotes rDNA stability and downregulates RNA polymerase I to ensure rDNA segregation. Nat Commun 6:6643.  https://doi.org/10.1038/ncomms7643 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Iacovella MG, Bremang M, Basha O, Giaco L, Carotenuto W, Golfieri C, Szakal B, Dal Maschio M, Infantino V, Beznoussenko GV, Joseph CR, Visintin C, Mironov AA, Visintin R, Branzei D, Ferreira-Cerca S, Yeger-Lotem E, De Wulf P (2018) Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Res 46:7586–7611.  https://doi.org/10.1093/nar/gky618 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kiburu IN, LaRonde-LeBlanc N (2012) Interaction of Rio1 kinase with toyocamycin reveals a conformational switch that controls oligomeric state and catalytic activity. PLoS One 7:e37371.  https://doi.org/10.1371/journal.pone.0037371 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Knuppel R, Christensen RH, Gray FC, Esser D, Strauss D, Medenbach J, Siebers B, MacNeill SA, LaRonde N, Ferreira-Cerca S (2017) Insights into the evolutionary conserved regulation of Rio ATPase activity. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkx1236 CrossRefGoogle Scholar
  32. Knuppel R, Christensen RH, Gray FC, Esser D, Strauss D, Medenbach J, Siebers B, MacNeill SA, LaRonde N, Ferreira-Cerca S (2018) Insights into the evolutionary conserved regulation of Rio ATPase activity. Nucleic Acids Res 46:1441–1456.  https://doi.org/10.1093/nar/gkx1236 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE, Vazquez F, Weir BA, Fitzgerald ME, Tanaka M, Bielski CM, Scott JM, Dennis C, Cowley GS, Boehm JS, Root DE, Golub TR, Clish CB, Bradner JE, Hahn WC, Garraway LA (2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218.  https://doi.org/10.1126/science.aad5214 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kubinski K, Maslyk M, Orzeszko A (2017) Benzimidazole inhibitors of protein kinase CK2 potently inhibit the activity of atypical protein kinase Rio1. Mol Cell Biochem 426:195–203.  https://doi.org/10.1007/s11010-016-2892-x CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kung JE, Jura N (2016) Structural basis for the non-catalytic functions of protein kinases. Structure 24:7–24.  https://doi.org/10.1016/j.str.2015.10.020 CrossRefPubMedPubMedCentralGoogle Scholar
  36. La Rosa FA, Pierce JW, Sonenshein GE (1994) Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors. Mol Cell Biol 14:1039–1044CrossRefPubMedCentralGoogle Scholar
  37. LaRonde NA (2014) The ancient microbial RIO kinases. J Biol Chem 289:9488–9492.  https://doi.org/10.1074/jbc.R113.538090 CrossRefPubMedPubMedCentralGoogle Scholar
  38. LaRonde-LeBlanc N, Wlodawer A (2005) The RIO kinases: an atypical protein kinase family required for ribosome biogenesis and cell cycle progression. Biochim Biophys Acta 1754:14–24.  https://doi.org/10.1016/j.bbapap.2005.07.037 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Laronde-Leblanc N, Guszczynski T, Copeland T, Wlodawer A (2005) Structure and activity of the atypical serine kinase Rio1. FEBS J 272:3698–3713.  https://doi.org/10.1111/j.1742-4658.2005.04796.x CrossRefPubMedGoogle Scholar
  40. Line A, Slucka Z, Stengrevics A, Silina K, Li G, Rees RC (2002) Characterisation of tumour-associated antigens in colon cancer. Cancer Immunol Immunother 51:574–582.  https://doi.org/10.1007/s00262-002-0322-2 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848.  https://doi.org/10.1016/j.cell.2009.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Marjon K, Cameron MJ, Quang P, Clasquin MF, Mandley E, Kunii K, McVay M, Choe S, Kernytsky A, Gross S, Konteatis Z, Murtie J, Blake ML, Travins J, Dorsch M, Biller SA, Marks KM (2016) MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep 15:574–587.  https://doi.org/10.1016/j.celrep.2016.03.043 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mavrakis KJ, McDonald ER III, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G, Stump M, deBeaumont R, Ho S, Yue Y, Liu Y, Yan-Neale Y, Yang G, Lin F, Yin H, Gao H, Kipp DR, Zhao S, McNamara JT, Sprague ER, Zheng B, Lin Y, Cho YS, Gu J, Crawford K, Ciccone D, Vitari AC, Lai A, Capka V, Hurov K, Porter JA, Tallarico J, Mickanin C, Lees E, Pagliarini R, Keen N, Schmelzle T, Hofmann F, Stegmeier F, Sellers WR (2016) Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351:1208–1213.  https://doi.org/10.1126/science.aad5944 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mendes TK, Novakovic S, Raymant G, Bertram SE, Esmaillie R, Nadarajan S, Breugelmans B, Hofmann A, Gasser RB, Colaiacovo MP, Boag PR (2015) Investigating the role of RIO protein kinases in Caenorhabditis elegans. PLoS One 10:e0117444.  https://doi.org/10.1371/journal.pone.0117444 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mielecki M, Krawiec K, Kiburu I, Grzelak K, Zagorski W, Kierdaszuk B, Kowa K, Fokt I, Szymanski S, Swierk P, Szeja W, Priebe W, Lesyng B, LaRonde-LeBlanc N (2013) Development of novel molecular probes of the Rio1 atypical protein kinase. Biochim Biophys Acta 1834:1292–1301.  https://doi.org/10.1016/j.bbapap.2013.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Misulovin Z, Pherson M, Gause M, Dorsett D (2018) Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet 14:e1007225.  https://doi.org/10.1371/journal.pgen.1007225 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nguyen Ba AN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinform 10:202.  https://doi.org/10.1186/1471-2105-10-202 CrossRefGoogle Scholar
  48. Nicolae A, Xi L, Pham TH, Pham TA, Navarro W, Meeker HG, Pittaluga S, Jaffe ES, Raffeld M (2016) Mutations in the JAK/STAT and RAS signaling pathways are common in intestinal T-cell lymphomas. Leukemia 30:2245–2247.  https://doi.org/10.1038/leu.2016.178 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Read RD, Fenton TR, Gomez GG, Wykosky J, Vandenberg SR, Babic I, Iwanami A, Yang H, Cavenee WK, Mischel PS, Furnari FB, Thomas JB (2013) A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma. PLoS Genet 9:e1003253.  https://doi.org/10.1371/journal.pgen.1003253 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Roesch A, Vogt T, Stolz W, Dugas M, Landthaler M, Becker B (2003) Discrimination between gene expression patterns in the invasive margin and the tumour core of malignant melanomas. Melanoma Res 13:503–509.  https://doi.org/10.1097/01.cmr.0000056271.56735.9a CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, Gaunt TR, Campbell C (2015) An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31:1536–1543.  https://doi.org/10.1093/bioinformatics/btv009 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Stefely JA, Licitra F, Laredj L, Reidenbach AG, Kemmerer ZA, Grangeray A, Jaeg-Ehret T, Minogue CE, Ulbrich A, Hutchins PD, Wilkerson EM, Ruan Z, Aydin D, Hebert AS, Guo X, Freiberger EC, Reutenauer L, Jochem A, Chergova M, Johnson IE, Lohman DC, Rush MJP, Kwiecien NW, Singh PK, Schlagowski AI, Floyd BJ, Forsman U, Sindelar PJ, Westphall MS, Pierrel F, Zoll J, Dal Peraro M, Kannan N, Bingman CA, Coon JJ, Isope P, Puccio H, Pagliarini DJ (2016) Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol Cell 63:608–620.  https://doi.org/10.1016/j.molcel.2016.06.030 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Suzuki C, Takahashi K, Hayama S, Ishikawa N, Kato T, Ito T, Tsuchiya E, Nakamura Y, Daigo Y (2007) Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol Cancer Ther 6:542–551.  https://doi.org/10.1158/1535-7163.MCT-06-0659 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tansey WP (2014) Mammalian MYC proteins and cancer. New J Sci 2014:757534CrossRefGoogle Scholar
  55. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA (2018) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res.  https://doi.org/10.1093/nar/gky1015 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Turowski TW, Lebaron S, Zhang E, Peil L, Dudnakova T, Petfalski E, Granneman S, Rappsilber J, Tollervey D (2014) Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits. Nucleic Acids Res 42:12189–12199.  https://doi.org/10.1093/nar/gku878 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vanrobays E, Gleizes PE, Bousquet-Antonelli C, Noaillac-Depeyre J, Caizergues-Ferrer M, Gelugne JP (2001) Processing of 20S pre-rRNA to 18S ribosomal RNA in yeast requires Rrp10p, an essential non-ribosomal cytoplasmic protein. Embo J 20:4204–4213.  https://doi.org/10.1093/emboj/20.15.4204 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vizoso-Vazquez A, Barreiro-Alonso A, Gonzalez-Siso MI, Rodriguez-Belmonte E, Lamas-Maceiras M, Cerdan ME (2018) HMGB proteins involved in TOR signaling as general regulators of cell growth by controlling ribosome biogenesis. Curr Genet 64:1205–1213.  https://doi.org/10.1007/s00294-018-0842-8 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Weinberg F, Schulze E, Fatouros C, Schmidt E, Baumeister R, Brummer T (2014) Expression pattern and first functional characterization of riok-1 in Caenorhabditis elegans. Gene Expr Patterns 15:124–134.  https://doi.org/10.1016/j.gep.2014.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Weinberg F, Reischmann N, Fauth L, Taromi S, Mastroianni J, Kohler M, Halbach S, Becker AC, Deng N, Schmitz T, Uhl FM, Herbener N, Riedel B, Beier F, Swarbrick A, Lassmann S, Dengjel J, Zeiser R, Brummer T (2017) The atypical kinase RIOK1 promotes tumor growth and invasive behavior. EBioMedicine 20:79–97.  https://doi.org/10.1016/j.ebiom.2017.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Widmann B, Wandrey F, Badertscher L, Wyler E, Pfannstiel J, Zemp I, Kutay U (2012) The kinase activity of human Rio1 is required for final steps of cytoplasmic maturation of 40S subunits. Mol Biol Cell 23:22–35.  https://doi.org/10.1091/mbc.E11-07-0639 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yang L, Zhou Y, Li Y, Zhou J, Wu Y, Cui Y, Yang G, Hong Y (2015) Mutations of p53 and KRAS activate NF-kappaB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett 357:520–526.  https://doi.org/10.1016/j.canlet.2014.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yuan W, Lok JB, Stoltzfus JD, Gasser RB, Fang F, Lei WQ, Fang R, Zhou YQ, Zhao JL, Hu M (2014) Toward understanding the functional role of Ss-RIOK-1, a RIO protein kinase-encoding gene of Strongyloides stercoralis. PLoS Neglected Trop Dis 8:e3062.  https://doi.org/10.1371/journal.pntd.0003062 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Integrative BiologyUniversity of TrentoPovoItaly
  2. 2.Biochemistry III-Institute for Biochemistry, Genetics and MicrobiologyUniversity of RegensburgRegensburgGermany

Personalised recommendations