Advertisement

Current Genetics

, Volume 65, Issue 1, pp 41–55 | Cite as

Protein phosphatases of Saccharomyces cerevisiae

  • Sarah R. Offley
  • Martin C. SchmidtEmail author
Review
  • 546 Downloads

Abstract

The phosphorylation status of a protein is highly regulated and is determined by the opposing activities of protein kinases and protein phosphatases within the cell. While much is known about the protein kinases found in Saccharomyces cerevisiae, the protein phosphatases are much less characterized. Of the 127 protein kinases in yeast, over 90% are in the same evolutionary lineage. In contrast, protein phosphatases are fewer in number (only 43 have been identified in yeast) and comprise multiple, distinct evolutionary lineages. Here we review the protein phosphatase families of yeast with regard to structure, catalytic mechanism, regulation, and signal transduction participation.

Keywords

Protein phosphatase Convergent evolution Saccharomyces cerevisiae Catalytic mechanism Signal transduction 

Notes

Acknowledgements

This work was supported by National Institutes of Health Grant GM46443.

References

  1. Abd-Rabbo D, Michnick SW (2017) Delineating functional principles of the bow tie structure of a kinase-phosphatase network in the budding yeast. BMC Syst Biol 11:38CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ansari A, Hampsey M (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19:2969–2978CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker SH, Frederick DL, Bloecher A, Tatchell K (1997) Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics 145:615–626PubMedPubMedCentralGoogle Scholar
  4. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164CrossRefPubMedGoogle Scholar
  5. Bharucha JP, Larson JR, Gao L, Daves LK, Tatchell K (2008a) Ypi1, a positive regulator of nuclear protein phosphatase type 1 activity in Saccharomyces cerevisiae. Mol Biol Cell 19:1032–1045CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bharucha JP, Larson JR, Konopka JB, Tatchell K (2008b) Saccharomyces cerevisiae Afr1 protein is a protein phosphatase 1/Glc7-targeting subunit that regulates the septin cytoskeleton during mating. Eukaryot Cell 7:1246–1255CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brautigan DL, Shenolikar S (2018) Protein serine/threonine phosphatases: keys to unlocking regulators and substrates. Annu Rev Biochem 87:921–964CrossRefPubMedGoogle Scholar
  8. Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003–1034CrossRefPubMedGoogle Scholar
  9. Cannon JF (2010) Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. Adv Appl Microbiol 73:27–59CrossRefPubMedGoogle Scholar
  10. Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM (2012) Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell ResGoogle Scholar
  11. Chambers RS, Dahmus ME (1994) Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J Biol Chem 269:26243–26248PubMedGoogle Scholar
  12. Chambers RS, Kane CM (1996) Purification and characterization of an RNA polymerase II phosphatase from yeast. J Biol Chem 271:24498–24504CrossRefPubMedGoogle Scholar
  13. Chang JS, Henry K, Wolf BL, Geli M, Lemmon SK (2002) Protein phosphatase-1 binding to scd5p is important for regulation of actin organization and endocytosis in yeast. J Biol Chem 277:48002–48008CrossRefPubMedGoogle Scholar
  14. Chao Y, Xing Y, Chen Y, Xu Y, Lin Z, Li Z, Jeffrey PD, Stock JB, Shi Y (2006) Structure and mechanism of the phosphotyrosyl phosphatase activator. Mol Cell 23:535–546CrossRefPubMedGoogle Scholar
  15. Cherkasova VA, Hinnebusch AG (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev 17:859–872CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508CrossRefPubMedGoogle Scholar
  17. Connolly S, Quasi-Woode D, Waldron L, Eberly C, Waters K, Muller EM, Kingsbury TJ (2018) Calcineurin regulatory subunit calcium-binding domains differentially contribute to Calcineurin signaling in Saccharomyces cerevisiae. GeneticsGoogle Scholar
  18. Connor JH, Frederick D, Huang H, Yang J, Helps NR, Cohen PT, Nairn AC, DePaoli-Roach A, Tatchell K, Shenolikar S (2000) Cellular mechanisms regulating protein phosphatase-1. A key functional interaction between inhibitor-2 and the type 1 protein phosphatase catalytic subunit. J Biol Chem 275:18670–18675CrossRefPubMedGoogle Scholar
  19. Cyert MS (2003) Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun 311:1143–1150CrossRefPubMedGoogle Scholar
  20. Das AK, Helps NR, Cohen PT, Barford D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. Embo J 15, 6798–6809Google Scholar
  21. de Nadal E, Clotet J, Posas F, Serrano R, Gomez N, Arino J (1998) The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc Natl Acad Sci USA 95:7357–7362CrossRefPubMedGoogle Scholar
  22. Deshpande RA, Wilson TE (2004) Identification of DNA 3′-phosphatase active site residues and their differential role in DNA binding, Mg2+ coordination, and catalysis. Biochemistry 43:8579–8589CrossRefPubMedGoogle Scholar
  23. Dichtl B, Blank D, Ohnacker M, Friedlein A, Roeder D, Langen H, Keller W (2002) A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol Cell 10:1139–1150CrossRefPubMedGoogle Scholar
  24. Dombek KM, Voronkova V, Raney A, Young ET (1999) Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression. Mol Cell Biol 19:6029–6040CrossRefPubMedPubMedCentralGoogle Scholar
  25. Egloff S, Murphy S (2008) Cracking the RNA polymerase II CTD code. Trends Genet 24:280–288CrossRefPubMedGoogle Scholar
  26. Egloff MP, Cohen PT, Reinemer P, Barford D (1995) Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol 254:942–959CrossRefPubMedGoogle Scholar
  27. Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S (2012) Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 45:111–122CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fox C, Zou J, Rappsilber J, Marston AL (2017) Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast. Wellcome Open Res 2:2Google Scholar
  29. Ganem C, Devaux F, Torchet C, Jacq C, Quevillon-Cheruel S, Labesse G, Facca C, Faye G (2003) Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. Embo J 22:1588–1598CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ganem C, Miled C, Facca C, Valay JG, Labesse G, Ben Hassine S, Mann C, Faye G (2006) Kinase Cak1 functionally interacts with the PAF1 complex and phosphatase Ssu72 via kinases Ctk1 and Bur1. Mol Genet Genomics 275:136–147CrossRefPubMedGoogle Scholar
  31. Ghosh A, Shuman S, Lima CD (2008) The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol Cell 32:478–490CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gibney PA, Fries T, Bailer SM, Morano KA (2008) Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins. Eukaryot Cell 7:938–948CrossRefPubMedPubMedCentralGoogle Scholar
  33. Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC, Kuriyan J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376:745–753CrossRefPubMedGoogle Scholar
  34. Goldman A, Roy J, Bodenmiller B, Wanka S, Landry CR, Aebersold R, Cyert MS (2014) The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Mol Cell 55:422–435CrossRefPubMedPubMedCentralGoogle Scholar
  35. Grigoriu S, Bond R, Cossio P, Chen JA, Ly N, Hummer G, Page R, Cyert MS, Peti W (2013) The molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin. PLoS Biol 11:e1001492CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hahn JS, Thiele DJ (2002) Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284CrossRefPubMedGoogle Scholar
  37. He X, Khan AU, Cheng H, Pappas DL Jr, Hampsey M, Moore CL (2003) Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev 17:1030–1042CrossRefPubMedPubMedCentralGoogle Scholar
  38. Heitman J, Movva NR, Hiestand PC, Hall MN (1991) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:1948–1952CrossRefPubMedGoogle Scholar
  39. Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B, Bollen M (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16:365–371CrossRefPubMedGoogle Scholar
  40. Heroes E, Lesage B, Gornemann J, Beullens M, Van Meervelt L, Bollen M (2012) The PP1-binding code: a molecular-lego strategy that governs specificity. FEBS JGoogle Scholar
  41. Hodko D, Ward T, Chanfreau G (2016) The Rtr1p CTD phosphatase autoregulates its mRNA through a degradation pathway involving the REX exonucleases, 22. RNA, New York, pp 559–570Google Scholar
  42. Hsu PL, Yang F, Smith-Kinnaman W, Yang W, Song JE, Mosley AL, Varani G (2014) Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J Mol Biol 426:2970–2981CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22:18–22CrossRefPubMedGoogle Scholar
  44. Hunter GO, Fox MJ, Smith-Kinnaman WR, Gogol M, Fleharty B, Mosley AL (2016) Phosphatase Rtr1 regulates global levels of serine 5 RNA polymerase II C-terminal domain phosphorylation and cotranscriptional histone methylation. Mol Cell Biol 36:2236–2245CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, Dunker AK, DePaoli-Roach AA (2007) Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem 282:28874–28883CrossRefPubMedGoogle Scholar
  46. Irani S, Yogesha SD, Mayfield J, Zhang M, Zhang Y, Matthews WL, Nie G, Prescott NA, Zhang YJ (2016) Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase. Science signaling 9:ra24CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jiang Y (2006) Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:440–449CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jordens J, Janssens V, Longin S, Stevens I, Martens E, Bultynck G, Engelborghs Y, Lescrinier E, Waelkens E, Goris J et al (2006) The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. J Biol Chem 281:6349–6357CrossRefPubMedGoogle Scholar
  49. Juneau K, Nislow C, Davis RW (2009) Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization. Genetics 183:185–194CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kaida D, Yashiroda H, Toh-e A, Kikuchi Y (2002) Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells 7:543–552CrossRefPubMedGoogle Scholar
  51. Kamenski T, Heilmeier S, Meinhart A, Cramer P (2004) Structure and mechanism of RNA polymerase II CTD phosphatases. Mol Cell 15:399–407CrossRefPubMedGoogle Scholar
  52. Kao L, Wang YT, Chen YC, Tseng SF, Jhang JC, Chen YJ, Teng SC (2014) Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis. Mol Cell Proteomics 13:594–605CrossRefPubMedGoogle Scholar
  53. King MM, Huang CY (1984) The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate, and divalent metal ions. Identification of calcineurin as a Zn and Fe metalloenzyme. J Biol Chem 259:8847–8856PubMedGoogle Scholar
  54. Knaus M, Cameroni E, Pedruzzi I, Tatchell K, De Virgilio C, Peter M (2005) The Bud14p-Glc7p complex functions as a cortical regulator of dynein in budding yeast. Embo J 24, 3000–3011Google Scholar
  55. Kobayashi J, Matsuura Y (2017) Structure and dimerization of the catalytic domain of the protein phosphatase Cdc14p, a key regulator of mitotic exit in Saccharomyces cerevisiae. Protein science: a publication of the Protein Society 26, 2105–2112Google Scholar
  56. Kondo A, Mostofa MG, Miyake K, Terasawa M, Nafisa I, Yeasmin A, Waliullah TM, Kanki T, Ushimaru T (2018) Cdc14 phosphatase promotes TORC1-regulated autophagy in yeast. J Mol BiolGoogle Scholar
  57. Kong SE, Kobor MS, Krogan NJ, Somesh BP, Sogaard TM, Greenblatt JF, Svejstrup JQ (2005) Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator. J Biol Chem 280:4299–4306CrossRefPubMedGoogle Scholar
  58. Kozubowski L, Panek H, Rosenthal A, Bloecher A, DeMarini DJ, Tatchell K (2003) A Bni4-Glc7 phosphatase complex that recruits chitin synthase to the site of bud emergence. Mol Biol Cell 14:26–39CrossRefPubMedPubMedCentralGoogle Scholar
  59. Krishnamurthy S, He X, Reyes-Reyes M, Moore C, Hampsey M (2004) Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell 14:387–394CrossRefPubMedGoogle Scholar
  60. Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F (2015) Identification of Cdk targets that control cytokinesis. Embo j 34:81–96CrossRefPubMedGoogle Scholar
  61. Kuznetsova E, Nocek B, Brown G, Makarova KS, Flick R, Wolf YI, Khusnutdinova A, Evdokimova E, Jin K, Tan K et al (2015) Functional diversity of haloacid dehalogenase superfamily phosphatases from Saccharomyces cerevisiae: biochemical, structural, and evolutionary insights. J Biol Chem 290:18678–18698CrossRefPubMedPubMedCentralGoogle Scholar
  62. Li X, Ferro-Novick S, Novick P (2013) Different polarisome components play distinct roles in Slt2p-regulated cortical ER inheritance in Saccharomyces cerevisiae. Mol Biol Cell 24:3145–3154CrossRefPubMedPubMedCentralGoogle Scholar
  63. Luke MM, Della Seta F, Di Como CJ, Sugimoto H, Kobayashi R, Arndt KT (1996) The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol Cell Biol 16:2744–2755CrossRefPubMedPubMedCentralGoogle Scholar
  64. Martin-Montalvo A, Gonzalez-Mariscal I, Pomares-Viciana T, Padilla-Lopez S, Ballesteros M, Vazquez-Fonseca L, Gandolfo P, Brautigan DL, Navas P, Santos-Ocana C (2013) The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast. J Biol Chem 288:28126–28137CrossRefPubMedPubMedCentralGoogle Scholar
  65. Matos-Perdomo E, Machin F (2018) The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner. Cell cycle (Georgetown Tex) 17:200–215CrossRefGoogle Scholar
  66. Mattison CP, Spencer SS, Kresge KA, Lee J, Ota IM (1999) Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol Cell Biol 19:7651–7660CrossRefPubMedPubMedCentralGoogle Scholar
  67. Melcher K, Entian KD (1992) Genetic analysis of serine biosynthesis and glucose repression in yeast. Curr Genet 21:295–300CrossRefPubMedGoogle Scholar
  68. Miller DP, Hall H, Chaparian R, Mara M, Mueller A, Hall MC, Shannon KB (2015) Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. Mol Biol Cell 26:2913–2926CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mosley AL, Pattenden SG, Carey M, Venkatesh S, Gilmore JM, Florens L, Workman JL, Washburn MP (2009) Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 34:168–178CrossRefPubMedPubMedCentralGoogle Scholar
  70. Munoz I, Ruiz A, Marquina M, Barcelo A, Albert A, Arino J (2004) Functional characterization of the yeast Ppz1 phosphatase inhibitory subunit Hal3: a mutagenesis study. J Biol Chem 279:42619–42627CrossRefPubMedGoogle Scholar
  71. Nakamura TS, Numajiri Y, Okumura Y, Hidaka J, Tanaka T, Inoue I, Suda Y, Takahashi T, Nakanishi H, Gao XD et al (2017) Dynamic localization of a yeast development-specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Mol Biol Cell 28:3881–3895CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ota IM, Mapes J (2007) Targeting of PP2C in budding yeast. Methods Mol Biol 365:309–322PubMedGoogle Scholar
  73. Pappas DL Jr, Hampsey M (2000) Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol 20:8343–8351CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pedelini L, Marquina M, Arino J, Casamayor A, Sanz L, Bollen M, Sanz P, Garcia-Gimeno MA (2007) YPI1 and SDS22 proteins regulate the nuclear localization and function of yeast type 1 phosphatase Glc7. J Biol Chem 282:3282–3292CrossRefPubMedGoogle Scholar
  75. Peggie MW, MacKelvie SH, Bloecher A, Knatko EV, Tatchell K, Stark MJ (2002) Essential functions of Sds22p in chromosome stability and nuclear localization of PP1. J Cell Sci 115:195–206PubMedGoogle Scholar
  76. Pinsky BA, Kotwaliwale CV, Tatsutani SY, Breed CA, Biggins S (2006) Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol Cell Biol 26:2648–2660CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R, Peti W (2010) Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol 17:459–464CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ramaswamy NT, Li L, Khalil M, Cannon JF (1998) Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 149:57–72PubMedPubMedCentralGoogle Scholar
  79. Ramos F, Leonard J, Clemente-Blanco A, Aragon L (2017) Cdc14 and chromosome condensation: evaluation of the recruitment of condensin to genomic regions. Methods Mol Biol 1505:229–243CrossRefPubMedGoogle Scholar
  80. Ren Y, Wang ZX, Wei Q (2009) Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+. Biol Chem 390:1155–1162CrossRefPubMedGoogle Scholar
  81. Reyes-Reyes M, Hampsey M (2007) Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol Cell Biol 27:926–936CrossRefPubMedGoogle Scholar
  82. Rosado-Lugo JD, Hampsey M (2014) The Ssu72 phosphatase mediates the RNA polymerase II initiation–elongation transition. J Biol Chem 289:33916–33926CrossRefPubMedPubMedCentralGoogle Scholar
  83. Roy J, Li H, Hogan PG, Cyert MS (2007) A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function. Mol Cell 25:889–901CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rubenstein EM, Schmidt MC (2007) Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. Eukaryot Cell 6:571–583CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ruiz A, Munoz I, Serrano R, Gonzalez A, Simon E, Arino J (2004) Functional characterization of the Saccharomyces cerevisiae VHS3 gene: a regulatory subunit of the Ppz1 protein phosphatase with novel, phosphatase-unrelated functions. J Biol Chem 279:34421–34430CrossRefPubMedGoogle Scholar
  86. Sharmin D, Sasano Y, Sugiyama M, Harashima S (2015) Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae. J Biosci Bioeng 119:392–398CrossRefPubMedGoogle Scholar
  87. Shou W, Seol JH, Shevchenko A, Baskerville C, Moazed D, Chen ZW, Jang J, Charbonneau H, Deshaies RJ (1999) Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97:233–244CrossRefPubMedGoogle Scholar
  88. Sia RA, Herald HA, Lew DJ (1996) Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol Biol Cell 7:1657–1666CrossRefPubMedPubMedCentralGoogle Scholar
  89. Siniossoglou S, Hurt EC, Pelham HR (2000) Psr1p/Psr2p, two plasma membrane phosphatases with an essential DXDX(T/V) motif required for sodium stress response in yeast. J Biol Chem 275:19352–19360CrossRefPubMedGoogle Scholar
  90. Smith-Kinnaman WR, Berna MJ, Hunter GO, True JD, Hsu P, Cabello GI, Fox MJ, Varani G, Mosley AL (2014) The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae. Mol bioSyst 10:1730–1741CrossRefPubMedPubMedCentralGoogle Scholar
  91. Smoly I, Shemesh N, Ziv-Ukelson M, Ben-Zvi A, Yeger-Lotem E (2017) An asymmetrically balanced organization of kinases versus phosphatases across eukaryotes determines their distinct impacts. PLoS Comput Biol 13:e1005221CrossRefPubMedPubMedCentralGoogle Scholar
  92. Stathopoulos-Gerontides A, Guo JJ, Cyert MS (1999) Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev 13:798–803CrossRefPubMedPubMedCentralGoogle Scholar
  93. Stegmeier F, Amon A (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38:203–232CrossRefPubMedGoogle Scholar
  94. Steinmetz EJ, Brow DA (2003) Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription. Mol Cell Biol 23:6339–6349CrossRefPubMedPubMedCentralGoogle Scholar
  95. Strausfeld U, Labbe JC, Fesquet D, Cavadore JC, Picard A, Sadhu K, Russell P, Doree M (1991) Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 351:242–245CrossRefPubMedGoogle Scholar
  96. Tachikawa H, Bloecher A, Tatchell K, Neiman AM (2001) A Gip1p-Glc7p phosphatase complex regulates septin organization and spore wall formation. J Cell Biol 155:797–808CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tan-Wong SM, Zaugg JB, Camblong J, Xu Z, Zhang DW, Mischo HE, Ansari AZ, Luscombe NM, Steinmetz LM, Proudfoot NJ (2012) Gene loops enhance transcriptional directionality, 338. Science, New York, pp 671–675Google Scholar
  98. Tatjer L, Sacristan-Reviriego A, Casado C, Gonzalez A, Rodriguez-Porrata B, Palacios L, Canadell D, Serra-Cardona A, Martin H, Molina M et al (2016) Wide-ranging effects of the yeast Ptc1 protein phosphatase acting through the MAPK kinase Mkk1. Genetics 202:141–156CrossRefPubMedGoogle Scholar
  99. Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R (2004) Structural basis of protein phosphatase 1 regulation. Nature 429:780–784CrossRefPubMedGoogle Scholar
  100. Tu J, Song W, Carlson M (1996) Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol Cell Biol 16:4199–4206CrossRefPubMedPubMedCentralGoogle Scholar
  101. Van Hoof C, Martens E, Longin S, Jordens J, Stevens I, Janssens V, Goris J (2005) Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2. Biochem J 386:93–102CrossRefPubMedPubMedCentralGoogle Scholar
  102. Vance JR, Wilson TE (2001) Uncoupling of 3′-phosphatase and 5′-kinase functions in budding yeast. Characterization of Saccharomyces cerevisiae DNA 3′-phosphatase (TPP1). J Biol Chem 276:15073–15081CrossRefPubMedGoogle Scholar
  103. Villoria MT, Ramos F, Duenas E, Faull P, Cutillas PR, Clemente-Blanco A (2017) Stabilization of the metaphase spindle by Cdc14 is required for recombinational DNA repair. Embo j 36:79–101CrossRefPubMedGoogle Scholar
  104. Visintin R, Hwang ES, Amon A (1999) Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398:818–823CrossRefPubMedGoogle Scholar
  105. Wang X, Culotta VC, Klee CB (1996) Superoxide dismutase protects calcineurin from inactivation. Nature 383:434–437CrossRefPubMedGoogle Scholar
  106. Wang H, Wang X, Jiang Y (2003) Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol Biol Cell 14:4342–4351CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wei H, Ashby DG, Moreno CS, Ogris E, Yeong FM, Corbett AH, Pallas DC (2001) Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J Biol Chem 276:1570–1577CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wu X, Tatchell K (2001) Mutations in yeast protein phosphatase type 1 that affect targeting subunit binding. Biochemistry 40:7410–7420CrossRefPubMedGoogle Scholar
  109. Xiang K, Manley JL, Tong L (2012) The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity. Nat Commun 3:946CrossRefPubMedPubMedCentralGoogle Scholar
  110. Ye Q, Feng Y, Yin Y, Faucher F, Currie MA, Rahman MN, Jin J, Li S, Wei Q, Jia Z (2013) Structural basis of calcineurin activation by calmodulin. Cell Signal 25:2661–2667CrossRefPubMedGoogle Scholar
  111. Yiu G, McCord A, Wise A, Jindal R, Hardee J, Kuo A, Shimogawa MY, Cahoon L, Wu M, Kloke J et al (2008) Pathways change in expression during replicative aging in Saccharomyces cerevisiae. J Gerontol A Biol Sci Med Sci 63:21–34CrossRefPubMedPubMedCentralGoogle Scholar
  112. Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS (2002) Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277:31079–31088CrossRefPubMedGoogle Scholar
  113. Zhan XL, Deschenes RJ, Guan KL (1997) Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev 11:1690–1702CrossRefPubMedGoogle Scholar
  114. Zhang ZY, Wang Y, Dixon JE (1994) Dissecting the catalytic mechanism of protein–tyrosine phosphatases. Proc Natl Acad Sci USA 91:1624–1627CrossRefPubMedGoogle Scholar
  115. Zhang DW, Mosley AL, Ramisetty SR, Rodriguez-Molina JB, Washburn MP, Ansari AZ (2012) Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem 287:8541–8551CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations