Current Genetics

, Volume 64, Issue 5, pp 1129–1139 | Cite as

Marker-free genetic manipulations in yeast using CRISPR/CAS9 system

  • Inga Soreanu
  • Adi Hendler
  • Danielle Dahan
  • Daniel Dovrat
  • Amir AharoniEmail author
Original Article


The budding yeast is currently one of the major model organisms for the study of a wide variety of biological processes. Genetic manipulation of yeast involves the extensive usage of selectable markers that can lead to undesired effects. Thus, marker-free genetic manipulation in yeast is highly desirable for gene/promoter replacement and various other applications. Here we combine the power of selectable markers followed by CRISPR/CAS9 genome editing for common genetic manipulations in yeast in a marker-free manner. We demonstrate our approach for whole gene and promoter replacements and for high-efficiency operator array integration. Our approach allows the utilization of many thousands of existing strains including library strains for the generation of significant genetic changes in yeast in a marker-free and cloning-free fashion.


S. cerevisiae CRISPR/CAS9 Yeast Marker-free 



We thank all the members of the Aharoni’s lab for advices and support. This work was supported by the Israeli Science foundation (ISF) Grant numbers 2297/15 and 1340/17, Binational Science Foundation (BSF) Grant number 2013358 and the European research training network (ITN, Horizon 2020) ES-cat (722610).

Supplementary material

294_2018_831_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1451 KB)


  1. Akada R, Hirosawa I, Kawahata M et al (2002) Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast 19:393–402. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akada R, Kitagawa T, Kaneko S et al (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23:399–405. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Apel AR, D’Espaux L, Wehrs M et al (2017) A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res 45:496–508. CrossRefGoogle Scholar
  4. Bähler J (2005) Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet 39:69–94. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bao Z, Xiao H, Liang J et al (2015) Homology-integrated CRISPR-cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585–594. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. CrossRefPubMedGoogle Scholar
  7. Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203:1027–1067. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben-Shitrit T, Yosef N, Shemesh K et al (2012) Systematic identification of gene annotation errors in the widely used yeast mutation collections. Nat Methods 9:373–378. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bonilla CY, Melo JA, Toczyski DP (2008) Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol Cell 30:267–276. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brouns SJJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas system. Science 339:819–824. (RNA-Guided) CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cubillos FA (2016) Exploiting budding yeast natural variation for industrial processes. Curr Genet 62:745–751CrossRefPubMedCentralGoogle Scholar
  14. Delneri D, Tomlin GC, Wixon JL et al (2000) Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252:127–135. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dicarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Elison GL, Song R, Acar M (2017) A precise genome editing method reveals insights into the activity of eukaryotic promoters. Cell Rep 18:275–286. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ferrezuelo F, Colomina N, Futcher B, Aldea M (2010) The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biol 11:R67. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Finley D, Ulrich HD, Sommer T, Kaiser P (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192:319–360. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. CrossRefGoogle Scholar
  22. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.<1541::AID-YEA476>3.0.CO;2-K CrossRefPubMedCentralGoogle Scholar
  23. Gruhlke MCH, Schlembach I, Leontiev R et al (2017) Yap1p, the central regulator of the S. cerevisiae oxidative stress response, is activated by allicin, a natural oxidant and defence substance of garlic. Free Radic Biol Med 108:793–802. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Güldener U, Heck S, Fiedler T et al (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hadwiger JA, Wittenberg C, Richardson HE et al (1989) A family of cyclin homologs that control the G1 phase in yeast. Proc Natl Acad Sci 86:6255–6259. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hao H, Wang X, Jia H et al (2016) Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Anal Biochem 509:118–123. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hediger F, Taddei A, Neumann FR, Gasser SM (2004) Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol 375:345–365. CrossRefGoogle Scholar
  29. Hendler A, Medina EM, Kishkevich A et al (2017) Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genet. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jakočinas T, Bonde I, Herrgård M et al (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222. CrossRefGoogle Scholar
  31. Jakočiunas T, Rajkumar AS, Zhang J et al (2015) CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth Biol 4:1126–1134. CrossRefGoogle Scholar
  32. Jensen ED, Ferreira R, Jakočiūnas T et al (2017) Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microb Cell Fact 16:46. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jessop-Fabre MM, Jakočiūnas T, Stovicek V et al (2016) EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 11:1110–1117. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Khmelinskii A, Meurer M, Duishoev N et al (2011) Seamless gene tagging by endonuclease-driven homologous recombination. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kitamura E, Blow JJ, Tanaka TU (2006) Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125:1297–1308. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lai WC, Sun HFS, Lin PH et al (2016) A new rapid and efficient system with dominant selection developed to inactivate and conditionally express genes in Candida albicans. Curr Genet 62:213–235. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Laughery MF, Hunter T, Brown A et al (2015) New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast 32:711–720. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee NCO, Larionov V, Kouprina N (2015) Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res 43:e55. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Löiodice I, Dubarry M, Taddei A (2014) Scoring and manipulating gene position and dynamics using FROS in budding yeast. Curr Protoc Cell Biol. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mans R, van Rossum HM, Wijsman M et al (2015) CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15:1–15. CrossRefGoogle Scholar
  42. Morano K, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nakamura T, Namba H, Ohmoto T et al (1995) Cloning and characterization of the Saccharomyces cerevisiae SVS1 gene which encodes a serine- and threonine-rich protein required for vanadate resistance. Gene 165:25–29. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Piccinno R, Cipinska M, Roukos V (2017) Studies of the DNA damage response by using the lac operator/repressor (LacO/LacR) tethering system. Methods Mol Biol. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rohner S, Gasser SM, Meister P (2008) Modules for cloning-free chromatin tagging in Saccharomyces cerevisiae. Yeast 25:235–239. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ryan OW, Skerker JM, Maurer MJ et al (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife 3:1–15. CrossRefGoogle Scholar
  47. Sandler I, Medalia O, Aharoni A (2013) Experimental analysis of co-evolution within protein complexes: the yeast exosome as a model. Proteins Struct Funct Bioinform 81:1997–2006. CrossRefGoogle Scholar
  48. Satomura A, Nishioka R, Mori H et al (2017) Precise genome-wide base editing by the CRISPR nickase system in yeast. Sci Rep 7:2095. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Schneider BL, Seufert W, Steiner B et al (1995) Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11:1265–1274. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shi S, Liang Y, Zhang MM et al (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 33:19–27. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Si T, Chao R, Min Y et al (2017) Automated multiplex genome-scale engineering in yeast. Nat Commun 8:15187. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Soutoglou E, Misteli T (2008) Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320:1507–1510. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Storici F, Resnick MA (2006) The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol 409:329–345CrossRefPubMedCentralGoogle Scholar
  54. Stuart D, Wittenberg C (1995) CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev 9:2780–2794. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Taxis C, Knop M (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 40:73–78. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tong AH, Evangelista M, Parsons AB et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368. CrossRefGoogle Scholar
  57. Toone WM, Jones N (1999) AP-1 transcription factors in yeast. Curr Opin Genet Dev 9:55–61CrossRefPubMedCentralGoogle Scholar
  58. Tsarmpopoulos I, Gourgues G, Blanchard A et al (2016) In-yeast engineering of a bacterial genome using CRISPR/Cas9. ACS Synth Biol 5:104–109. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Walter JM, Chandran SS, Horwitz AA (2016) CRISPR-Cas-assisted multiplexing (CAM): simple same-day multi-locus engineering in yeast. J Cell Physiol 231:2563–2569. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang Q, Xue H, Li S et al (2017) A method for labeling proteins with tags at the native genomic loci in budding yeast. PLoS One 12:e0176184. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61. CrossRefPubMedGoogle Scholar
  63. Wendland J (2003) PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 44:115–123CrossRefPubMedCentralGoogle Scholar
  64. Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350. CrossRefPubMedGoogle Scholar
  65. Zamir L, Zaretsky M, Fridman Y et al (2012) Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction networks in fungi leads to interspecies network incompatibility. Proc Natl Acad Sci 109:E406–E414. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Life Sciences and the National Institute for Biotechnology in the NegevBen-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations