Advertisement

Current Genetics

, Volume 64, Issue 5, pp 1117–1127 | Cite as

Induction and relocalization of telomeric repeat-containing RNAs during diauxic shift in budding yeast

  • Carmina Angelica Perez-Romero
  • Maxime Lalonde
  • Pascal Chartrand
  • Emilio Cusanelli
Original Article
  • 228 Downloads

Abstract

Telomeres are maintained in a heterochromatic state that represses transcription of subtelomeric genes, a phenomenon known as telomere position effect. Nevertheless, telomeric DNA is actively transcribed, leading to the synthesis of telomeric repeat-containing noncoding RNA or TERRA. This nuclear noncoding RNA has been proposed to play important roles at telomeres, regulating their silencing, capping, repair and elongation by telomerase. In the budding yeast Saccharomyces cerevisiae, TERRA accumulation is repressed by telomeric silencing and the Rat1 exonuclease. On the other hand, telomere shortening promotes expression of TERRA. So far, little is known about the biological processes that induce TERRA expression in yeast. Understanding the dynamics of TERRA expression and localization is essential to define its function in telomere biology. Here, we aim to study the dynamics of TERRA expression during yeast cell growth. Using live-cell imaging, RNA-FISH and quantitative RT-PCR, we show that TERRA expression is induced as yeast cells undergo diauxic shift, a lag phase during which yeast cells switch their metabolism from anaerobic fermentation to oxidative respiration. This induction is transient as TERRA levels decrease during post-diauxic shift. The increased expression of TERRA is not due to the shortening of telomeres or increased stability of this transcript. Surprisingly, this induction is coincident with a cytoplasmic accumulation of TERRA molecules. Our results suggest that TERRA transcripts may play extranuclear functions with important implications in telomere biology and add a novel layer of complexity in the interplay between telomere biology, metabolism and stress response.

Keywords

Telomeres TERRA Diauxic shift RNA FISH Transcription 

Notes

Acknowledgements

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) MOP-89768. CAPR was supported by a CDMC-CREATE fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). ML is supported by a fellowship from the Fonds de Recherche du Québec-Santé (FRQS). PC holds a Research Chair from the FRQS. EC is supported by a Rita Levi-Montalcini fellowship from the Italian Ministry of Education University and Research (MIUR).

Supplementary material

294_2018_829_MOESM1_ESM.tif (827 kb)
Supplementary material 1 (TIF 826 KB)
294_2018_829_MOESM2_ESM.tif (9 mb)
Supplementary material 2 (TIF 9247 KB)
294_2018_829_MOESM3_ESM.docx (59 kb)
Supplementary material 3 (DOCX 58 KB)

References

  1. Arnoult N, Van Beneden A, Decottignies A (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha. Nat Struct Mol Biol 19:948–956CrossRefGoogle Scholar
  2. Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM (2014) RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 5:5220.  https://doi.org/10.1038/ncomms6220 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801.  https://doi.org/10.1126/science.1147182 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balk B, Maicher A, Dees M, Klermund J, Luke-Glaser S, Bender K, Luke B (2013) Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20:1199–1205.  https://doi.org/10.1038/nsmb.2662 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beishline K, Vladimirova O, Tutton S, Wang Z, Deng Z, Lieberman PM (2017) CTCF driven TERRA transcription facilitates completion of telomere DNA replication. Nat Commun 8:2114.  https://doi.org/10.1038/s41467-017-02212-w CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180:1044–1052PubMedPubMedCentralGoogle Scholar
  7. Brauer MJ, Saldanha AJ, Dolinski K, Botstein D (2005) Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16:2503–2517.  https://doi.org/10.1091/mbc.E04-11-0968 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen CY, Ezzeddine N, Shyu AB (2008) Messenger RNA half-life measurements in mammalian cells. Methods Enzymol 448:335–357.  https://doi.org/10.1016/S0076-6879(08)02617-7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chu H-P et al (2017) TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell 170:86–101.e16.  https://doi.org/10.1016/j.cell.2017.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cusanelli E, Chartrand P (2014) Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology. Wiley Interdiscip Rev RNA 5:407–419CrossRefPubMedCentralGoogle Scholar
  11. Cusanelli E, Romero CAP, Chartrand P (2013) Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell 51:780–791CrossRefPubMedCentralGoogle Scholar
  12. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686.  https://doi.org/10.1126/science.278.5338.680 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Diman A, Decottignies A (2017) Genomic origin and nuclear localization of TERRA telomeric repeat-containing RNA: from Darkness to Dawn. FEBS J.  https://doi.org/10.1111/febs.14363 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Diman A et al (2016) Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Science Adv 2:e1600031.  https://doi.org/10.1126/sciadv.1600031 CrossRefGoogle Scholar
  15. Doksani Y, de Lange T (2014) The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a016576 CrossRefPubMedCentralGoogle Scholar
  16. Flynn RL et al (2011) TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471:532–536.  https://doi.org/10.1038/nature09772 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gadaleta MC, Gonzalez-Medina A, Noguchi E (2016) Timeless protection of telomeres. Curr Genet 62:725–730.  https://doi.org/10.1007/s00294-016-0599-x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Galdieri L, Mehrotra S, Yu S, Vancura A (2010) Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS 14:629–638.  https://doi.org/10.1089/omi.2010.0069 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257CrossRefPubMedCentralGoogle Scholar
  20. Graf M et al (2017) Telomere length determines TERRA and R-Loop regulation through the cell cycle. Cell 170:72–85.e14.  https://doi.org/10.1016/j.cell.2017.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Iglesias N, Redon S, Pfeiffer V, Dees M, Lingner J, Luke B (2011) Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep 12:587–593CrossRefPubMedCentralGoogle Scholar
  22. Jain D, Cooper JP (2010) Telomeric strategies: means to an end. Annu Rev Genet 44:243–269.  https://doi.org/10.1146/annurev-genet-102108-134841 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Laprade H, Lalonde M, Guérit P, Chartrand D (2017) Live-cell imaging of budding yeast telomerase RNA and TERRA. Methods 114:46–53.  https://doi.org/10.1016/j.ymeth.2016.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lue NF, Yu EY (2017) Telomere recombination pathways: tales of several unhappy marriages. Curr Genet 63:401–409  https://doi.org/10.1007/s00294-016-0653-8 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing rna and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32:465–477CrossRefPubMedCentralGoogle Scholar
  26. Maestroni L, Audry J, Matmati S, Arcangioli B, Geli V, Coulon S (2017) Eroded telomeres are rearranged in quiescent fission yeast cells through duplications of subtelomeric sequences. Nat Commun 8:1684.  https://doi.org/10.1038/s41467-017-01894-6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Millet C, Makovets S (2016) Aneuploidy as a mechanism of adaptation to telomerase insufficiency. Curr Genet 62:557–564.  https://doi.org/10.1007/s00294-015-0559-x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moradi-Fard S, Sarthi J, Tittel-Elmer M, Lalonde M, Cusanelli E, Chartrand P, Cobb JA (2016) Smc5/6 Is a telomere-associated complex that regulates Sir4 binding and TPE. PLOS Genetics 12:e1006268.  https://doi.org/10.1371/journal.pgen.1006268 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Moravec M et al (2016) TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep 17:999–1012.  https://doi.org/10.15252/embr.201541708 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Murphy JP, Stepanova E, Everley RA, Paulo JA, Gygi SP (2015) Comprehensive temporal protein dynamics during the diauxic shift in Saccharomyces cerevisiae. Mol Cell Proteom 14:2454–2465.  https://doi.org/10.1074/mcp.M114.045849 CrossRefGoogle Scholar
  31. Nautiyal S, DeRisi JL, Blackburn EH (2002) The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc Natl Acad Sci 99:9316–9321.  https://doi.org/10.1073/pnas.142162499 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pedruzzi I, Bürckert N, Egger P, De Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19:2569–2579.  https://doi.org/10.1093/emboj/19.11.2569 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Peng B, Williams TC, Henry M, Nielsen LK, Vickers CE (2015) Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities. Microb Cell Fact 14:91.  https://doi.org/10.1186/s12934-015-0278-5 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Porro A, Feuerhahn S, Delafontaine J, Riethman H, Rougemont J,J Lingner (2014a) Functional characterization of the TERRA transcriptome at damaged telomeres. Nature Commun 5:5379.  https://doi.org/10.1038/ncomms6379 CrossRefGoogle Scholar
  35. Porro A, Feuerhahn S, Lingner J (2014b) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 6:765–776.  https://doi.org/10.1016/j.celrep.2014.01.022 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rodrigues J, Lydall D (2017) Paf1 and Ctr9, core components of the PAF1 complex, maintain low levels of telomeric repeat containing RNA. Nucl Acids Res.  https://doi.org/10.1093/nar/gkx1131 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236CrossRefPubMedCentralGoogle Scholar
  38. Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM (2009) The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res 19:611–625.  https://doi.org/10.1101/gr.083881.108 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Teste M-A, Duquenne M, François J-L, Parrou JM (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99.  https://doi.org/10.1186/1471-2199-10-99 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tung S-Y, Lee K-W, Hong J-Y, Lee S-P, Shen H-H, Liou G-G (2013) Changes in the genome-wide localization pattern of Sir3 in Saccharomyces cerevisiae during different growth stages. Comput Struct Biotechnol J 7:e201304001.  https://doi.org/10.5936/csbj.201304001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang Z, Lieberman PM (2016) The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol 13:690–695.  https://doi.org/10.1080/15476286.2016.1203503 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
  2. 2.Centre for Integrative Biology (CIBIO)University of TrentoTrentoItaly
  3. 3.Department of BiochemistryMcMaster UniversityOntarioCanada
  4. 4.UMR3664, Institut CurieParisFrance

Personalised recommendations