Advertisement

Current Genetics

, Volume 64, Issue 5, pp 971–983 | Cite as

Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways

  • B. Mikolaskova
  • M. Jurcik
  • I. Cipakova
  • M. Kretova
  • M. Chovanec
  • L. Cipak
Review
  • 792 Downloads

Abstract

Endogenous and exogenous factors can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. The protection of genome integrity is ensured by the so-called “DNA damage response” (DDR), a set of evolutionary-conserved events that, triggered upon DNA damage detection, arrests the cell cycle, and attempts DNA repair. Here, we review the role of the DDR proteins as post-transcriptional regulators of gene expression, in addition to their roles in DNA damage recognition, signaling, and repair. At the same time, we discuss recent insights into how pre-mRNA splicing factors go beyond their splicing activities and play direct functions in detecting, signaling, and repairing DNA damage. The importance of extensive two-way crosstalk and interaction between the RNA processing and the DDR stems from growing evidence that the defects of their communication lead to genomic instability.

Keywords

Genome stability DNA damage response DNA repair RNA processing R-loops 

Notes

Acknowledgements

This work was supported by People Programme (Marie Curie Actions) European Union’s Seventh Framework Programme (REA Grant Agreement No. 609427, SASPRO Project No. 0032/01/02), by the Slovak Academy of Sciences, by the VEGA Grants 2/0026/18, 2/0014/14, and 2/0056/14, and by the Slovak Research and Development Agency Contracts No. APVV-16-120, APVV-0111-12, and APVV-14-0783.

References

  1. Abbas M, Shanmugam I, Bsaili M, Hromas R, Shaheen M (2014) The role of the human psoralen 4 (hPso4) protein complex in replication stress and homologous recombination. J Biol Chem 289:14009–14019PubMedPubMedCentralGoogle Scholar
  2. Adamson B, Smogorzewska A, Sigoillot FD, King RW, Elledge SJ (2012) A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol 14:318–328PubMedPubMedCentralGoogle Scholar
  3. Aguilera A, García-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124PubMedPubMedCentralGoogle Scholar
  4. Aguilera A, García-Muse T (2013) Causes of genome instability. Annu Rev Genet 47:1–32PubMedPubMedCentralGoogle Scholar
  5. Aguilera A, Gómez-González B (2017) DNA-RNA hybrids: the risks of DNA breakage during transcription. Nat Struct Mol Biol 24:439–443PubMedPubMedCentralGoogle Scholar
  6. Akaike Y, Masuda K, Kuwano Y, Nishida K, Kajita K, Kurokawa K, Satake Y, Shoda K, Imoto I, Rokutan K (2014) HuR regulates alternative splicing of the TRA2β gene in human colon cancer cells under oxidative stress. Mol Cell Biol 34:2857–2873PubMedPubMedCentralGoogle Scholar
  7. Akhmedov AT, Lopez BS (2000) Human 100-kDa homologous DNA-pairing protein is the splicing factor PSF and promotes DNA strand invasion. Nucleic Acids Res 28:3022–3030PubMedPubMedCentralGoogle Scholar
  8. Anantha RW, Alcivar AL, Ma J, Cai H, Simhadri S, Ule J, König J, Xia B (2013) Requirement of heterogeneous nuclear ribonucleoprotein C for BRCA gene expression and homologous recombination. PLoS One 8:e61368PubMedPubMedCentralGoogle Scholar
  9. Aronica L, Kasparek T, Ruchman D, Marquez Y, Cipak L, Cipakova I, Anrather D, Mikolaskova B, Radtke M, Sarkar S, Pai CC, Blaikley E, Walker C, Shen KF, Schroeder R, Barta A, Forsburg SL, Humphrey T (2016) The spliceosome-associated protein Nrl1 suppresses homologous recombination-dependent R-loop formation in fission yeast. Nucleic Acids Res 44:1703–1717PubMedPubMedCentralGoogle Scholar
  10. Awasthi P, Foiani M, Kumar A (2015) ATM and ATR signaling at a glance. J Cell Sci 128:4255–4262Google Scholar
  11. Barlow JH, Nussenzweig A (2014) Replication initiation and genome instability: a crossroads for DNA and RNA synthesis. Cell Mol Life Sci 71:4545–4559PubMedPubMedCentralGoogle Scholar
  12. Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J, Andersen JS (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteom 9:1314–1323Google Scholar
  13. Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A (2014) BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511:362–365PubMedPubMedCentralGoogle Scholar
  14. Bhatia V, Herrera-Moyano E, Aguilera A, Gómez-González B (2017) The role of replication-associated repair factors on R-loops. Genes 8:E171PubMedPubMedCentralGoogle Scholar
  15. Bladen CL, Udayakumar D, Takeda Y, Dynan WS (2005) Identification of the polypyrimidine tract binding protein-associated splicing factor.p54(nrb) complex as a candidate DNA double-strand break rejoining factor. J Biol Chem 280:5205–5210PubMedPubMedCentralGoogle Scholar
  16. Boucas J, Riabinska A, Jokic M, Herter-Sprie GS, Chen S, Höpker K, Reinhardt HC (2012) Posttranscriptional regulation of gene expression-adding another layer of complexity to the DNA damage response. Front Genet 3:159PubMedPubMedCentralGoogle Scholar
  17. Breitbart RE, Andreadis A, Nadal-Ginard B (1987) Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem 56:467–495PubMedPubMedCentralGoogle Scholar
  18. Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, Frit P, Calsou P (2014) DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 42:9047–9062PubMedPubMedCentralGoogle Scholar
  19. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–1505PubMedPubMedCentralGoogle Scholar
  20. Cevher MA, Kleiman FE (2010) Connections between 3′-end processing and DNA damage response. Wiley Interdiscip Rev RNA 1:193–199PubMedPubMedCentralGoogle Scholar
  21. Chakraborty P, Grosse F (2011) Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10:654–665PubMedGoogle Scholar
  22. Chakraborty A, Tapryal N, Venkova T, Horikoshi N, Pandita RK, Sarker AH, Sarkar PS, Pandita TK, Hazra TK (2016) Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat Commun 7:13049PubMedPubMedCentralGoogle Scholar
  23. Chanarat S, Sträßer K (2013) Splicing and beyond: the many faces of the Prp19 complex. Biochim Biophys Acta 1833:2126–2134PubMedGoogle Scholar
  24. Chédin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet 32:828–838PubMedPubMedCentralGoogle Scholar
  25. Choi HH, Choi HK, Jung SY, Hyle J, Kim BJ, Yoon K, Cho EJ, Youn HD, Lahti JM, Qin J, Kim ST (2014) CHK2 kinase promotes pre-mRNA splicing via phosphorylating CDK11(p110). Oncogene 33:108–115PubMedGoogle Scholar
  26. Ciccia A, Huang JW, Izhar L, Sowa ME, Harper JW, Elledge SJ (2014) Treacher collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response. Proc Natl Acad Sci USA 111:18631–18636PubMedPubMedCentralGoogle Scholar
  27. Cooper TJ, Garcia V, Neale MJ (2016) Meiotic DSB pattering: a multifaceted process. Cell Cycle 15:13–21PubMedPubMedCentralGoogle Scholar
  28. Czubaty A, Girstun A, Kowalska-Loth B, Trzcinska AM, Purta E, Winczura A, Grajkowski W, Staroń K (2005) Proteomic analysis of complexes formed by human topoisomerase I. Biochim Biophys Acta 1749:133–141PubMedGoogle Scholar
  29. Datta A, Jinks-Robertson (1995) Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268:1616–1619PubMedGoogle Scholar
  30. de Morais MA Jr, Vicente EJ, Brozmanova J, Schenberg AC, Henriques JA (1996) Further characterization of the yeast pso4-1 mutant: interaction with rad51 and rad52 mutants after photoinduced psoralen lesions. Curr Genet 29:211–218PubMedPubMedCentralGoogle Scholar
  31. de Andrade HH, Marques EK, Schenberg AC, Henriques JA (1989) The PSO4 gene is responsible for an error-prone recombinational DNA repair pathway in Saccharomyces cerevisiae. Mol Gen Genet 217:419–426PubMedPubMedCentralGoogle Scholar
  32. Di Giammartino DC, Manley JL (2014) New links between mRNA polyadenylation and diverse nuclear pathways. Mol Cells 37:644–649PubMedPubMedCentralGoogle Scholar
  33. Dubois JC, Yates M, Gaudreau-Lapierre A, Clément G, Cappadocia L, Gaudreau L, Zou L, Maréchal A (2017) A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination. Nucleic Acids Res 45:8859–8872PubMedPubMedCentralGoogle Scholar
  34. Dutertre M, Sanchez G, Barbier J, Corcos L, Auboeuf D (2011) The emerging role of pre-messenger RNA splicing in stress responses: sending alternative messages and silent messengers. RNA Biol 8:740–747PubMedPubMedCentralGoogle Scholar
  35. El Hage A, French SL, Beyer AL, Tollervey D (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24:1546–1558PubMedPubMedCentralGoogle Scholar
  36. Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, Mione M, Carninci P, d’Adda di Fagagna F (2012) Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488:231–235PubMedPubMedCentralGoogle Scholar
  37. Gaillard H, Aguilera A (2016) Transcription as a threat to genome integrity. Annu Rev Biochem 85:291–317PubMedPubMedCentralGoogle Scholar
  38. García-Muse T, Aguilera A (2016) Transcription–replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 17:553–563PubMedPubMedCentralGoogle Scholar
  39. García-Rubio ML, Pérez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E, Rosado IV, Aguilera A (2015) The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet 11:e1005674PubMedPubMedCentralGoogle Scholar
  40. Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR (2016) The RNA response to DNA damage. J Mol Biol 428:2636–2651PubMedPubMedCentralGoogle Scholar
  41. González-Aguilera C, Tous C, Gómez-González B, Huertas P, Luna R, Aguilera A (2008) The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol Biol Cell 19:4310–4318PubMedPubMedCentralGoogle Scholar
  42. Gorski JJ, Savage KI, Mulligan JM, McDade SS, Blayney JK, Ge Z, Harkin DP (2011) Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Res 39:9536–9548PubMedPubMedCentralGoogle Scholar
  43. Gottipati P, Helleday T (2009) Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis 24:203–210PubMedPubMedCentralGoogle Scholar
  44. Gregan J, Polakova S, Zhang L, Tolić-Nørrelykke IM, Cimini D (2011) Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 21:374–381PubMedPubMedCentralGoogle Scholar
  45. Grey M, Düsterhöft A, Henriques JA, Brendel M (1996) Allelism of PSO4 and PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae. Nucleic Acids Res 24:4009–4014PubMedPubMedCentralGoogle Scholar
  46. Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA (2017) Transcription–replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170:774–786PubMedPubMedCentralGoogle Scholar
  47. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–970PubMedPubMedCentralGoogle Scholar
  48. Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM, Eaton ML, Kellis M, Hill SJ, Parmigiani G, Proudfoot NJ, Livingston DM (2015) BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 57:636–647PubMedPubMedCentralGoogle Scholar
  49. Hawley BR, Lu WT, Wilczynska A, Bushell M (2017) The emerging role of RNAs in DNA damage repair. Cell Death Differ 24:580–587PubMedPubMedCentralGoogle Scholar
  50. Hegde ML, Banerjee S, Hegde PM, Bellot LJ, Hazra TK, Boldogh I, Mitra S (2012) Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J Biol Chem 287:34202–34211PubMedPubMedCentralGoogle Scholar
  51. Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, Schultz RA, Stefanini M, Lehmann AR, Mayne LV, Friedberg EC (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82:555–564PubMedPubMedCentralGoogle Scholar
  52. Henriques JA, Vicente EJ, Leandro da Silva KV, Schenberg AC (1989) PSO4: a novel gene involved in error-prone repair in Saccharomyces cerevisiae. Mutat Res 218:111–124PubMedPubMedCentralGoogle Scholar
  53. Herrmann G, Kais S, Hoffbauer J, Shah-Hosseini K, Brüggenolte N, Schober H, Fäsi M, Schär P (2007) Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism. Nucleic Acids Res 35:2321–2332PubMedPubMedCentralGoogle Scholar
  54. Hou S, Li N, Zhang Q, Li H, Wei X, Hao T, Li Y, Azam S, Liu C, Cheng W, Jin B, Liu Q, Li M, Lei H (2016) XAB2 functions in mitotic cell cycle progression via transcriptional regulation of CENPE. Cell Death Dis 7:e2409PubMedPubMedCentralGoogle Scholar
  55. Hu D, Mayeda A, Trembley JH, Lahti JM, Kidd VJ (2003) CDK11 complexes promote pre-mRNA splicing. J Biol Chem 278:8623–8629Google Scholar
  56. Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721Google Scholar
  57. Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9PubMedPubMedCentralGoogle Scholar
  58. Im JS, Keaton M, Lee KY, Kumar P, Park J, Dutta A (2014) ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks. Genes Dev 28:875–887PubMedPubMedCentralGoogle Scholar
  59. Izhar L, Adamson B, Ciccia A, Lewis J, Pontano-Vaites L, Leng Y, Liang AC, Westbrook TF, Harper JW, Elledge SJ (2015) A systematic analysis of factors localized to damaged chromatin reveals PARP-dependent recruitment of transcription factors. Cell Rep 11:1486–1500PubMedPubMedCentralGoogle Scholar
  60. Jaafar L, Li Z, Li S, Dynan WS (2017) SFPQ·NONO and XLF function separately and together to promote DNA double-strand break repair via canonical nonhomologous end joining. Nucleic Acids Res 45:1848–1859PubMedPubMedCentralGoogle Scholar
  61. Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (2006) A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312:1798–1802Google Scholar
  62. Kabeche L, Nguyen HD, Buisson R, Zou L (2018) A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 359:108–114PubMedPubMedCentralGoogle Scholar
  63. Kai M (2016) Roles of RNA-binding proteins in DNA damage response. Int J Mol Sci 2016 17:310PubMedPubMedCentralGoogle Scholar
  64. Kakarougkas A, Ismail A, Chambers AL, Riballo E, Herbert AD, Künzel J, Löbrich M, Jeggo PA, Downs JA (2014) Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol Cell 55:723–732PubMedPubMedCentralGoogle Scholar
  65. Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436–439PubMedPubMedCentralGoogle Scholar
  66. Kim H, D’Andrea AD (2012) Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 26:1393–1408PubMedPubMedCentralGoogle Scholar
  67. Kim HS, Li H, Cevher M, Parmelee A, Fonseca D, Kleiman FE, Lee SB (2006) DNA damage-induced BARD1 phosphorylation is critical for the inhibition of messenger RNA processing by BRCA1/BARD1 complex. Cancer Res 66:4561–4565PubMedPubMedCentralGoogle Scholar
  68. Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–238PubMedPubMedCentralGoogle Scholar
  69. Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552–557PubMedPubMedCentralGoogle Scholar
  70. Krietsch J, Caron MC, Gagné JP, Ethier C, Vignard J, Vincent M, Rouleau M, Hendzel MJ, Poirier GG, Masson JY (2012) PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Res 40:10287–10301PubMedPubMedCentralGoogle Scholar
  71. Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447:730–734PubMedPubMedCentralGoogle Scholar
  72. Kuraoka I, Ito S, Wada T, Hayashida M, Lee L, Saijo M, Nakatsu Y, Matsumoto M, Matsunaga T, Handa H, Qin J, Nakatani Y, Tanaka K (2008) Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair. J Biol Chem 283:940–950PubMedPubMedCentralGoogle Scholar
  73. Labourier E, Rossi F, Gallouzi IE, Allemand E, Divita G, Tazi J (1998) Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor. Nucleic Acids Res 26:2955–2962PubMedPubMedCentralGoogle Scholar
  74. Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond B Biol Sci 366:3562–3571PubMedPubMedCentralGoogle Scholar
  75. Larsen DH, Hari F, Clapperton JA, Gwerder M, Gutsche K, Altmeyer M, Jungmichel S, Toledo LI, Fink D, Rask MB, Grøfte M, Lukas C, Nielsen ML, Smerdon SJ, Lukas J, Stucki M (2014) The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage. Nat Cell Biol 16:792–803PubMedPubMedCentralGoogle Scholar
  76. Le May N, Mota-Fernandes D, Vélez-Cruz R, Iltis I, Biard D, Egly JM (2010) NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38:54–66PubMedPubMedCentralGoogle Scholar
  77. Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–378PubMedPubMedCentralGoogle Scholar
  78. Li S, Kuhne WW, Kulharya A, Hudson FZ, Ha K, Cao Z, Dynan WS (2009) Involvement of p54(nrb), a PSF partner protein, in DNA double-strand break repair and radioresistance. Nucleic Acids Res 37:6746–6753PubMedPubMedCentralGoogle Scholar
  79. Lu X, Legerski RJ (2007) The Prp19/Pso4 core complex undergoes ubiquitylation and structural alterations in response to DNA damage. Biochem Biophys Res Commun 354:968–974PubMedPubMedCentralGoogle Scholar
  80. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327:996–1000PubMedPubMedCentralGoogle Scholar
  81. Magnuson B, Bedi K, Ljungman M (2016) Genome stability versus transcript diversity. DNA Repair 44:81–86PubMedPubMedCentralGoogle Scholar
  82. Mahajan KN, Mitchell BS (2003) Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci USA 100:10746–10751PubMedPubMedCentralGoogle Scholar
  83. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5:a012716PubMedPubMedCentralGoogle Scholar
  84. Maréchal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, Liu S, Jiménez AE, Jin J, Zou L (2014) PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell 53:235–246PubMedPubMedCentralGoogle Scholar
  85. Mastrocola AS, Kim SH, Trinh AT, Rodenkirch LA, Tibbetts RS (2013) The RNA-binding protein fused in sarcoma (FUS) functions downstream of poly(ADP-ribose) polymerase (PARP) in response to DNA damage. J Biol Chem 288:24731–24741PubMedPubMedCentralGoogle Scholar
  86. Matic I (2017) The major contribution of the DNA damage-triggered reactive oxygen species production to cell death: implications for antimicrobial and cancer therapy. Curr Genet.  https://doi.org/10.1007/s00294-017-0787-3 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166PubMedPubMedCentralGoogle Scholar
  88. McKay SL, Johnson TL (2010) A bird’s-eye view of post-translational modifications in the spliceosome and their roles in spliceosome dynamics. Mol Biosyst 6:2093–2102PubMedPubMedCentralGoogle Scholar
  89. Michl J, Zimmer J, Tarsounas M (2016) Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 35:909–923PubMedPubMedCentralGoogle Scholar
  90. Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41:21–32PubMedPubMedCentralGoogle Scholar
  91. Moriel-Carretero M, Ovejero S, Gérus-Durand M, Vryzas D, Constantinou A (2017) Fanconi anemia FANCD2 and FANCI proteins regulate the nuclear dynamics of splicing factors. J Cell Biol 216:4007–4026PubMedPubMedCentralGoogle Scholar
  92. Morozumi Y, Takizawa Y, Takaku M, Kurumizaka H (2009) Human PSF binds to RAD51 and modulates its homologous-pairing and strand-exchange activities. Nucleic Acids Res 37:4296–4307PubMedPubMedCentralGoogle Scholar
  93. Nakazawa Y, Sasaki K, Mitsutake N, Matsuse M, Shimada M, Nardo T, Takahashi Y, Ohyama K, Ito K, Mishima H, Nomura M, Kinoshita A, Ono S, Takenaka K, Masuyama R, Kudo T, Slor H, Utani A, Tateishi S, Yamashita S, Stefanini M, Lehmann AR, Yoshiura K, Ogi T (2012) Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat Genet 44:586–592PubMedGoogle Scholar
  94. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006Google Scholar
  95. Ohle C, Tesorero R, Schermann G, Dobrev N, Sinning I, Fischer T (2016) Transient RNA–DNA hybrids are required for efficient double-strand break repair. Cell 167:1001–1013PubMedGoogle Scholar
  96. Oliveira RA, Nasmyth K (2010) Getting through anaphase: splitting the sisters and beyond. Biochem Soc Trans 38:1639–1644PubMedGoogle Scholar
  97. Park E, Kim H, Kim JM, Primack B, Vidal-Cardenas S, Xu Y, Price BD, Mills AA, D’Andrea AD (2013) FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. Mol Cell 50:908–918PubMedPubMedCentralGoogle Scholar
  98. Paulsen RD, Cimprich KA (2007) The ATR pathway: fine-tuning the fork. DNA Repair 6:953–966PubMedGoogle Scholar
  99. Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ, Helleday T, Legube G, La Thangue NB, Porter AC, Humphrey TC (2014) SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 7:2006–2018PubMedPubMedCentralGoogle Scholar
  100. Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8:e1002717PubMedPubMedCentralGoogle Scholar
  101. Rajesh C, Baker DK, Pierce AJ, Pittman DL (2011) The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion. Nucleic Acids Res 39:132–145PubMedGoogle Scholar
  102. Revers LF, Cardone JM, Bonatto D, Saffi J, Grey M, Feldmann H, Brendel M, Henriques JA (2002) Thermoconditional modulation of the pleiotropic sensitivity phenotype by the Saccharomyces cerevisiae PRP19 mutant allele pso4-1. Nucleic Acids Res 30:4993–5003PubMedPubMedCentralGoogle Scholar
  103. Rossi F, Labourier E, Forné T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80–82PubMedGoogle Scholar
  104. Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297:547–551PubMedGoogle Scholar
  105. Rulten SL, Grundy GJ (2017) Non-homologous end joining: common interaction sites and exchange of multiple factors in the DNA repair process. Bioessays 39:201600209Google Scholar
  106. Sachs NA, Vaillancourt RR (2003) Cyclin-dependent kinase 11(p110) activity in the absence of CK2. Biochim Biophys Acta 1624:98–108PubMedGoogle Scholar
  107. Salas-Armenteros I, Pérez-Calero C, Bayona-Feliu A, Tumini E, Luna R, Aguilera A (2017) Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability. EMBO J 36:3532–3547PubMedGoogle Scholar
  108. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16:583–597PubMedGoogle Scholar
  109. Savage KI, Harkin DP (2015) BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. FEBS J 282:630–646PubMedGoogle Scholar
  110. Savage KI, Gorski JJ, Barros EM, Irwin GW, Manti L, Powell AJ, Pellagatti A, Lukashchuk N, McCance DJ, McCluggage WG, Schettino G, Salto-Tellez M, Boultwood J, Richard DJ, McDade SS, Harkin DP (2014) Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol Cell 54:445–459PubMedPubMedCentralGoogle Scholar
  111. Saxowsky TT, Doetsch PW (2006) RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 106:474–488PubMedPubMedCentralGoogle Scholar
  112. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528Google Scholar
  113. Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang CC, Cohn MA, Gibbons RJ, Deans AJ, Niedzwiedz W (2015) The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol Cell 60:351–361PubMedPubMedCentralGoogle Scholar
  114. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA (2010) ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141:970–981PubMedPubMedCentralGoogle Scholar
  115. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168Google Scholar
  116. Shin KH, Kim RH, Kang MK, Kim RH, Kim SG, Lim PK, Yochim JM, Baluda MA, Park NH (2007) p53 promotes the fidelity of DNA end-joining activity by, in part, enhancing the expression of heterogeneous nuclear ribonucleoprotein G. DNA Repair 6:830–840PubMedPubMedCentralGoogle Scholar
  117. Shkreta L, Chabot B (2015) The RNA splicing response to DNA damage. Biomolecules 5:2935–2977PubMedPubMedCentralGoogle Scholar
  118. Shkreta L, Michelle L, Toutant J, Tremblay ML, Chabot B (2011) The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 286:331–340PubMedPubMedCentralGoogle Scholar
  119. Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42:794–805PubMedPubMedCentralGoogle Scholar
  120. Smolka MB, Bastos de Oliveira FM, Harris MR, de Bruin RA (2012) The checkpoint transcriptional response: make sure to turn it off once you are satisfied. Cell Cycle 11:3166–3174PubMedPubMedCentralGoogle Scholar
  121. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785PubMedPubMedCentralGoogle Scholar
  122. Spivak G, Itoh T, Matsunaga T, Nikaido O, Hanawalt P, Yamaizumi M (2002) Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers. DNA Repair 1:629–643PubMedPubMedCentralGoogle Scholar
  123. Starita LM, Horwitz AA, Keogh MC, Ishioka C, Parvin JD, Chiba N (2005) BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J Biol Chem 280:24498–24505PubMedPubMedCentralGoogle Scholar
  124. Trembley JH, Hu D, Hsu LC, Yeung CY, Slaughter C, Lahti JM, Kidd VJ (2002) PITSLRE p110 protein kinases associate with transcription complexes and affect their activity. J Biol Chem 277:2589–2596Google Scholar
  125. Trembley JH, Hu D, Slaughter CA, Lahti JM, Kidd VJ (2003) Casein kinase 2 interacts with cyclin-dependent kinase 11 (CDK11) in vivo and phosphorylates both the RNA polymerase II carboxyl-terminal domain and CDK11 in vitro. J Biol Chem 278:2265–2270Google Scholar
  126. Tuduri S, Crabbé L, Conti C, Tourrière H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C, Pommier Y, Tazi J, Coquelle A, Pasero P (2009) Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11:1315–1324PubMedPubMedCentralGoogle Scholar
  127. Ui A, Nagaura Y, Yasui A (2015) Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. Mol Cell 58:468–482PubMedPubMedCentralGoogle Scholar
  128. Vitelli V, Galbiati A, Iannelli F, Pessina F, Sharma S, d’Adda di Fagagna F (2017) Recent advancements in DNA damage-transcription crosstalk and high-resolution mapping of DNA breaks. Annu Rev Genom Hum Genet 18:87–113Google Scholar
  129. Wan L, Huang J (2014) The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem 289:6619–6626PubMedPubMedCentralGoogle Scholar
  130. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430440Google Scholar
  131. Wang Q, Goldstein M (2016) Small RNAs recruit chromatin-modifying enzymes MMSET and Tip60 to reconfigure damaged DNA upon double-strand break and facilitate repair. Cancer Res 76:1904–1915PubMedPubMedCentralGoogle Scholar
  132. Wang G, Vasquez KM (2017) Effects of replication and transcription on DNA structure-related genetic instability. Genes (Basel) 8:E17Google Scholar
  133. Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16:1383–1391PubMedPubMedCentralGoogle Scholar
  134. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y (2012) A role for small RNAs in DNA double-strand break repair. Cell 149:101–112PubMedPubMedCentralGoogle Scholar
  135. Westover KD, Bushnell DA, Kornberg RD (2004) Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303:1014–1016PubMedPubMedCentralGoogle Scholar
  136. Wong A, Zhang S, Mordue D, Wu JM, Zhang Z, Darzynkiewicz Z, Lee EY, Lee MY (2013) PDIP38 is translocated to the spliceosomes/nuclear speckles in response to UV-induced DNA damage and is required for UV-induced alternative splicing of MDM2. Cell Cycle 12:3184–3193PubMedPubMedCentralGoogle Scholar
  137. Xu B, Clayton DA (1996) RNA–DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA–DNA hybrids serving as primers. EMBO J 15:3135–3143PubMedPubMedCentralGoogle Scholar
  138. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4:442–451Google Scholar
  139. Zhang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ (2005) The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 280:40559–40567PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics, Biomedical Research Center, Cancer Research InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations