Advertisement

Current Genetics

, Volume 64, Issue 4, pp 871–881 | Cite as

Respiratory deficiency in yeast mevalonate kinase deficient may explain MKD-associate metabolic disorder in humans

  • Manuella Maria Silva Santos
  • Carolina Elsztein
  • Rafael Barros De Souza
  • Sérgio de Sá Leitão PaivaJr
  • Jaqueline Azevêdo Silva
  • Sergio Crovella
  • Marcos Antonio De MoraisJr
Original Article

Abstract

Mevalonate kinase deficiency (MKD) an orphan drug rare disease affecting humans with different clinical presentations, is still lacking information about its pathogenesis; no animal or cell model mimicking the genetic defect, mutations at MVK gene, and its consequences on the mevalonate pathway is available. Trying to clarify the effects of MVK gene impairment on the mevalonate pathway we used a yeast model, the erg12-d mutant strain Saccharomyces cerevisiae (orthologous of MKV) retaining only 10% of mevalonate kinase (MK) activity, to describe the effects of reduced MK activity on the mevalonate pathway. Since shortage of isoprenoids has been described in MKD, we checked this observation using a physiologic approach: while normally growing on glucose, erg12-d showed growth deficiency in glycerol, a respirable carbon source, that was not rescued by supplementation with non-sterol isoprenoids, such as farnesol, geraniol nor geranylgeraniol, produced by the mevalonate pathway. Erg12-d whole genome expression analysis revealed specific downregulation of RSF2 gene encoding general transcription factor for respiratory genes, explaining the absence of growth on glycerol. Moreover, we observed the upregulation of genes involved in sulphur amino acids biosynthesis that coincided with the increasing in the amount of proteins containing sulfhydryl groups; upregulation of ubiquinone biosynthesis genes was also detected. Our findings demonstrated that the shortage of isoprenoids is not the main mechanism involved in the respiratory deficit and mitochondrial malfunctioning of MK-defective cells, while the scarcity of ubiquinone plays an important role, as already observed in MKD patients.

Keywords

Isoprenoids Gene expression Microarray Respiratory metabolism Yeast 

Notes

Acknowledgements

This work has been partially supported by the RC42/11 from IRCCS Burlo Garofolo (Trieste, Italy) and by the research fund of the Federal University of Pernambuco.

Supplementary material

294_2018_803_MOESM1_ESM.xlsx (180 kb)
Table S1. List of differentially expressed genes in four conditions: Erg12-d glycerol relative to wild type glycerol, wild type glycerol relative to wild type Glucose, Erg12-d glycerol relative to Erg12-d glucose and Erg12-d glucose relative to wild type glucose (XLSX 180 KB)

References

  1. Altmann K, Westermann B (2005) Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 16:5410–5417.  https://doi.org/10.1091/mbc.E05-07-0678 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bard M, Albrecht MR, Gupta N, Guynn CJ, Stlllwell W (1988) Geraniol interferes with membrane functions in strains of Candida and Saccharomyces. Lipids 23:534–538Google Scholar
  3. Bentinger M, Tekle M, Dallner G (2010) Coenzyme Q—biosynthesis and functions. Biochem Biophys Res Commun 396:74–79.  https://doi.org/10.1016/j.bbrc.2010.02.147 CrossRefPubMedGoogle Scholar
  4. Bodar EJ, van der Hilst JC, Drenth JP, van der Meer JW, Simon A (2005) Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med 63:260–264PubMedGoogle Scholar
  5. Boyer PD (1997) The ATP synthase—a splendid molecular machine. Annu Rev Biochem 66:717–749.  https://doi.org/10.1146/annurev.biochem.66.1.717 PubMedCrossRefGoogle Scholar
  6. Clayton PT (1998) Disorders of cholesterol biosynthesis. Arch Dis Child 78:185–189CrossRefPubMedPubMedCentralGoogle Scholar
  7. DeClue JE, Vass WC, Papageorge AG, Lowy DR, Willumsen BM (1991) Inhibition of cell growth by lovastatin is independent of ras function. Cancer Res 51:712–717PubMedGoogle Scholar
  8. Demasi AP, Pereira GA, Netto LES (2006) Yeast oxidative stress response Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J 273:805–816.  https://doi.org/10.1111/j.1742-4658.2006.05116.x CrossRefPubMedGoogle Scholar
  9. Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L (2015) Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 38:145–156.  https://doi.org/10.1007/s10545-014-9749-9 CrossRefPubMedGoogle Scholar
  10. Devenish RJ, Prescott M, Roucou X, Nagley P (2000) Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex. Biochim Biophys Acta 1458(2–3):428–442.  https://doi.org/10.1091/mbc.E05-07-0678 CrossRefPubMedGoogle Scholar
  11. Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L (2014) Genetics of coenzyme q10 deficiency. Mol Syndr 5:156–162.  https://doi.org/10.1159/000362826 CrossRefGoogle Scholar
  12. Dorsey JK, Porter JW (1968) The inhibition of mevalonic kinase by geranyl and farnesyl pyrophosphates. J Biol Chem 243:4667–4670PubMedGoogle Scholar
  13. Drenth JP, Vonk AG, Simon A, Powell R, van der Meer JW (2001) Limited efficacy of thalidomide in the treatment of febrile attacks of the hyper-IgD and periodic fever syndrome: a randomized, double-blind, placebo-controlled trial. J Pharmacol Exp Ther 298:1221–1226PubMedGoogle Scholar
  14. Elsztein C, Lucena RM, Morais MA Jr (2011) The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 12:1–10.  https://doi.org/10.1186/1471-2199-12-38 CrossRefGoogle Scholar
  15. Fišar Z, Hroudová J, Singh N, Kopřivová A, Macečková D (2016) Effect of simvastatin, coenzyme Q10, resveratrol, acetylcysteine and acetylcarnitine on mitochondrial respiration. Folia Biol 62:53–66Google Scholar
  16. Frenkel J, Rijkers GT, Mandey SH, Buurman SW, Houten SM, Wanders RJ, Waterham HR, Kuis W (2002) Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum 46:2794–2803.  https://doi.org/10.1002/art.10550 CrossRefPubMedGoogle Scholar
  17. Fu Z, Wang M, Potter D, Miziorko HM, Kim JJ (2002) The structure of a binary complex betweena mammalian mevalonate kinase and ATP: insights into the reaction mechanism and human inherited disease. J Biol Chem 277:18134–18142.  https://doi.org/10.1074/jbc.M200912200 CrossRefPubMedGoogle Scholar
  18. Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024.  https://doi.org/10.1172/JCI45693 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Henneman L, van Cruchten AG, Kulik W, Waterham HR (2011) Inhibition of the isoprenoid biosynthesis pathway; detection of intermediates by UPLC-MS/MS. Biochim Biophys Acta 181:227–233.  https://doi.org/10.1016/j.bbalip.2011.01.002 CrossRefGoogle Scholar
  20. Herrero E, Ros J, Belli G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235.  https://doi.org/10.1016/j.bbagen.2007.12.004 CrossRefPubMedGoogle Scholar
  21. Hubner C, Hoffmann GF, Charpentier C, Gibson Km B, Finckh B, Herbert Puhl H, Kohlschtt A (1993) Hans-Anton Lehr Ha. Decreased plasma ubiquinone-10 concentration in patients with mevalonate kinase deficiency. Pediatric Res 34(2):129–133.  https://doi.org/10.1203/00006450-199308000-00004 CrossRefGoogle Scholar
  22. James AM, Cocheme HM, Smith RAJ, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. J Biol Chem 280(22):21295–21312.  https://doi.org/10.1074/jbc.M501527200 CrossRefPubMedGoogle Scholar
  23. Kawamukai M (2015) Biosynthesis of coenzyme Q in eukaryotes. Biosci Biotechnol Biochem 80:23–33.  https://doi.org/10.1080/09168451.2015.1065172 CrossRefPubMedGoogle Scholar
  24. Kwolek-Mirek M, Zadrag-Tecza R, Bartosz G (2012) Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram. Cell Biol Toxicol 28:1–9.  https://doi.org/10.1007/s10565-011-9200-z CrossRefPubMedGoogle Scholar
  25. Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E et al (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570.  https://doi.org/10.1126/science.1230381 CrossRefPubMedGoogle Scholar
  26. Laxman S, Sutter BM, Tu BP (2013) Methionine is a signal of amino acid sufficiency that inhibits autophagy through the methylation of PP2A. Autophagy 10(2):386–387.  https://doi.org/10.4161/auto.27485 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lempiainen H, Shore D (2009) Growth control and ribosome biogenesis. Curr Opin Cell Biol 21:855–863.  https://doi.org/10.1016/j.ceb.2009.09.002 CrossRefPubMedGoogle Scholar
  28. Li D, She X, Calderone R (2016) Functional diversity of complex I subunits in Candida albicans mitochondria. Curr Genet 62:87–95.  https://doi.org/10.1007/s00294-015-0518-6 CrossRefPubMedGoogle Scholar
  29. Longatti A, Tooze SA (2009) Vesicular trafficking and autophagosome formation. Cell Death Differ 16:956–965.  https://doi.org/10.1038/cdd.2009.39 CrossRefPubMedGoogle Scholar
  30. Lu L, Roberts GG, Oszust C, Hudson AP (2005) The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae. Curr Genet 48(4):235 – 46.  https://doi.org/10.1007/s00294-005-0023-4 CrossRefPubMedGoogle Scholar
  31. Lucena RM, Elsztein C, De Barros Pita W, De Souza RB, Paiva SSP Jr, De Morais Jr MA (2015) Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress. Antonie Van Leeuwenhoek 108:1147–1160.  https://doi.org/10.1007/s10482-015-0568-2 CrossRefPubMedGoogle Scholar
  32. Machida K, Tanaka T, Fujita KI, Taniguchi M (1998) Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae.. J Bacteriol 180:4460–4465PubMedPubMedCentralGoogle Scholar
  33. Mandey SH, Kuijk LM, Frenkel J, Waterham HR (2006) A role for geranylgeranylation in interleukin-1β secretion. Arthritis Rheum 54:3690–3695.  https://doi.org/10.1002/art.22194 CrossRefPubMedGoogle Scholar
  34. Marcuzzi A, Pontillo A, De Leo L, Tommasini A, Decorti G, Not T, Ventura A (2008) Natural isoprenoids are able to reduce inflammation in a mouse model of mevalonate kinase deficiency. Pediatr Res 64:177–182.  https://doi.org/10.1203/PDR.0b013e3181761870 CrossRefPubMedGoogle Scholar
  35. Marcuzzi A, Tommasini A, Crovella S, Pontillo A (2010) Natural isoprenoids inhibit LPS induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes. Int Immunopharmacol 10:639–642.  https://doi.org/10.1016/j.intimp.2010.03.008 CrossRefPubMedGoogle Scholar
  36. Marcuzzi A, Crovella S, Pontillo A (2011) Geraniol rescues inflammation in cellular and animal models of mevalonate kinase deficiency. In Vivo 25:87–92PubMedGoogle Scholar
  37. Marcuzzi A, Zanin V, Piscianz E, Tricarico PM, Vuch J, Girardelli M, Monasta L, Bianco AM, Crovella S (2012) Lovastatin-induced apoptosis is modulated by geranylgeraniol in a neuroblastoma cell line. Int J Devl Neuroscience 30:451–456.  https://doi.org/10.1016/j.ijdevneu.2012.06.002 CrossRefGoogle Scholar
  38. Miettinen TP, Björklund M (2016) The mevalonate pathway as a metabolic requirement for autophagy—implications for growth control, proteostasis, and disease. Mol Cell Oncol 3:e1143546.  https://doi.org/10.1080/23723556.2016.1143546 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Moebius FF, Fitzky BU, Glossmann H (2000) Genetic defects in postsqualene cholesterol biosynthesis. Trends Endocrinol Metab 11:106–114CrossRefPubMedGoogle Scholar
  40. Nakamoto RK et al (1999) Rotational coupling in the F0F1 ATP synthase. Annu Rev Biophys Biomol Struct 28:205–234.  https://doi.org/10.1146/annurev.biophys.28.1.205 PubMedCrossRefGoogle Scholar
  41. Nishida Aoki N, Mori H, Kuroda K, Ueda M (2015) Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast. Curr Genet 61:153–164.  https://doi.org/10.1007/s00294-014-0463-9 CrossRefPubMedGoogle Scholar
  42. Pavlik P, Simon M, Schuster T, Ruis H (1993) The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24:21–25CrossRefPubMedGoogle Scholar
  43. Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochem Biophys Acta 1783:1354–1368.  https://doi.org/10.1016/j.bbamcr.2008.01.023 CrossRefPubMedGoogle Scholar
  44. Rodriguez-Hernandez A, Cordero MD, Salviati L, Artuch R, Pineda M, Briones P et al (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5:19–32CrossRefPubMedGoogle Scholar
  45. Schneider R, Massow M, Lisowsky T, Weiss H (1995) Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein. Curr Genet 29(1):10 – 7CrossRefPubMedGoogle Scholar
  46. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205CrossRefPubMedGoogle Scholar
  47. Simonicova L, Dudekova H, Ferenc J, Prochazkova K, Nebohacova M, Dusinsky R, Nosek J, Tomaska L (2015) Saccharomyces cerevisiae as a model for the study of extranuclear functions of mammalian telomerase. Curr Genet 61:517–527.  https://doi.org/10.1007/s00294-014-0472-8 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sprague GF, Cronan JE (1977) Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism. 129:1335–1342Google Scholar
  49. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN (2014) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133:1–9.  https://doi.org/10.1007/s00439-013-1358-4 CrossRefPubMedGoogle Scholar
  50. Tricarico PM, Kleiner G, Valencic E, Campisciano G, Girardelli M, Crovella S, Knowles A, Marcuzzi A (2014) Block of the mevalonate pathway triggers oxidative and inflammatory molecular mechanisms modulated by exogenous isoprenoid compounds. Int J Mol Sci 15:6843–6856.  https://doi.org/10.3390/ijms15046843 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tricarico PM, Crovella S, Celsi F (2015) mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. Int J Mol Sci 16:16067–16084.  https://doi.org/10.3390/ijms160716067 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tricarico PM, Romeo A, Gratton R, Crovella S, Celsi F (2017) Lack of prenylated proteins, autophagy impairment and apoptosis in SH-SY5Y neuronal cell model of mevalonate kinase deficiency. Cell Physiol Biochem 41:1649–1660.  https://doi.org/10.1159/000471235 CrossRefPubMedGoogle Scholar
  53. van der Burgh R, ter Haar NM, Boes ML, Frenkel J (2013) Mevalonate kinase deficiency, a metabolic autoinflammatory disease. Clin Immunol 147:197–206.  https://doi.org/10.1016/j.clim.2012.09.011 CrossRefPubMedGoogle Scholar
  54. Zore GB, Thakre AD, Rathod V, Karuppayil SM (2011) Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses 54:99–109.  https://doi.org/10.1111/j.1439-0507.2009.01852.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Manuella Maria Silva Santos
    • 1
    • 2
  • Carolina Elsztein
    • 1
    • 3
  • Rafael Barros De Souza
    • 1
    • 4
  • Sérgio de Sá Leitão PaivaJr
    • 5
  • Jaqueline Azevêdo Silva
    • 2
    • 6
  • Sergio Crovella
    • 2
    • 6
  • Marcos Antonio De MoraisJr
    • 1
    • 2
  1. 1.Interdepartmental Research Group in Metabolic EngineeringFederal University of PernambucoRecifeBrazil
  2. 2.Department of GeneticsFederal University of PernambucoRecifeBrazil
  3. 3.Department of virology/CPqAMOswaldo Cruz FundationRecifeBrazil
  4. 4.Institute for Biologial SciencesUniversity of PernambucoRecifeBrazil
  5. 5.Laboratory of Bioinformatics and Evolutionary BiologyFederal Rural University PernambucoRecifeBrazil
  6. 6.Laboratory of Immunopathology Keizo AsamiFederal University of PernambucoRecifeBrazil

Personalised recommendations