Advertisement

Current Genetics

, Volume 64, Issue 4, pp 777–784 | Cite as

Intron specificity in pre-mRNA splicing

  • Shravan Kumar MishraEmail author
  • Poonam Thakran
Review

Abstract

The occurrence of spliceosomal introns in eukaryotic genomes is highly diverse and ranges from few introns in an organism to multiple introns per gene. Introns vary with respect to their lengths, strengths of splicing signals, and position in resident genes. Higher intronic density and diversity in genetically complex organisms relies on increased efficiency and accuracy of spliceosomes for pre-mRNA splicing. Since intron diversity is critical for functions in RNA stability, regulation of gene expression and alternative splicing, RNA-binding proteins, spliceosomal regulatory factors and post-translational modifications of splicing factors ought to make the splicing process intron-specific. We recently reported function and regulation of a ubiquitin fold harboring splicing regulator, Sde2, which following activation by ubiquitin-specific proteases facilitates excision of selected introns from a subset of multi-intronic genes in Schizosaccharomyces pombe (Thakran et al. EMBO J,  https://doi.org/10.15252/embj.201796751, 2017). By reviewing our findings with understandings of intron functions and regulated splicing processes, we propose possible functions and mechanism of intron-specific pre-mRNA splicing and suggest that this process is crucial to highlight importance of introns in eukaryotic genomes.

Keywords

Intron-specific pre-mRNA splicing Splicing regulation Alternative splicing Intron function Ubiquitin-like proteins Sde2 Hub1/UBL5 

Notes

Acknowledgements

Members of S.K.M. laboratory are acknowledged for their inputs on the manuscript. Research in S.K.M. laboratory is supported by the Ministry of Human Resource and Development (MHRD) and the Department of Science and Technology (DST), Government of India, and the Max Planck Society, Germany. P.T. is a recipient of scholarship from DST, Government of India.

References

  1. Agranat-Tamir L, Shomron N, Sperling J, Sperling R (2014) Interplay between pre-mRNA splicing and microRNA biogenesis within the supraspliceosome. Nucleic Acids Res 42:4640–4651.  https://doi.org/10.1093/nar/gkt1413 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alvarez CJ, Romfo CM, Vanhoy RW et al (1996) Mutational analysis of U1 function in Schizosaccharomyces pombe: pre-mRNAs differ in the extent and nature of their requirements for this snRNA in vivo. RNA 2:404–418PubMedPubMedCentralGoogle Scholar
  3. Ammon T, Mishra SK, Kowalska K et al (2014) The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells. J Mol Cell Biol 6:312–323.  https://doi.org/10.1093/jmcb/mju026 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ast G (2004) How did alternative splicing evolve? Nat Rev Genet 5:773–782CrossRefPubMedGoogle Scholar
  5. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690.  https://doi.org/10.1016/j.molcel.2012.05.021 CrossRefPubMedGoogle Scholar
  6. Bayne EH, Bijos D, White S et al (2014) A systematic genetic screen identifies new factors influencing centromeric heterochromatin integrity in fission yeast. Genome Biol 15:481.  https://doi.org/10.1186/s13059-014-0481-4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bellare P, Small EC, Huang X et al (2008) A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol 15:444–451.  https://doi.org/10.1038/nsmb.1401 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben-Yehuda S, Dix I, Russell CS et al (2000) Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics 156:1503–1517PubMedPubMedCentralGoogle Scholar
  9. Berg MG, Singh LN, Younis I et al (2012) U1 snRNP determines mRNA length and regulates isoform expression. Cell 150:53–64.  https://doi.org/10.1016/j.cell.2012.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Biamonti G, Caceres JF (2009) Cellular stress and RNA splicing. Trends Biochem Sci 34:146–153.  https://doi.org/10.1016/j.tibs.2008.11.004 CrossRefPubMedGoogle Scholar
  11. Bonnet A, Grosso AR, Elkaoutari A et al (2017) Introns protect eukaryotic genomes from transcription-associated genetic instability. Mol Cell 67:608–621.e6.  https://doi.org/10.1016/j.molcel.2017.07.002 CrossRefPubMedGoogle Scholar
  12. Buratti E, Baralle FE (2004) Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24:10505–10514.  https://doi.org/10.1128/MCB.24.24.10505-10514.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Campion Y, Neel H, Gostan T et al (2010) Specific splicing defects in S. pombe carrying a degron allele of the Survival of Motor Neuron gene. EMBO J 29:1817–1829CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen M, Manley JL (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741–754.  https://doi.org/10.1038/nrm2777 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen Y-C, Milliman EJ, Goulet I et al (2010) Protein arginine methylation facilitates cotranscriptional recruitment of pre-mRNA splicing factors. Mol Cell Biol 30:5245–5256.  https://doi.org/10.1128/MCB.00359-10 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55.  https://doi.org/10.3389/fgene.2012.00055 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dahan O, Kupiec M (2002) Mutations in genes of Saccharomyces cerevisiae encoding pre-mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint. Nucleic Acids Res 30:4361–4370CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dahan O, Kupiec M (2004) The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene. Nucleic Acids Res 32:2529–2540.  https://doi.org/10.1093/nar/gkh574 CrossRefPubMedPubMedCentralGoogle Scholar
  19. De Conti L, Baralle M, Buratti E (2013) Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip Rev RNA 4:49–60CrossRefPubMedGoogle Scholar
  20. Diem MD, Chan CC, Younis I, Dreyfuss G (2007) PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs. Nat Struct Mol Biol 14:1173CrossRefPubMedGoogle Scholar
  21. Fair BJ, Pleiss JA (2017) The power of fission: yeast as a tool for understanding complex splicing. Curr Genet 63:375–380.  https://doi.org/10.1007/s00294-016-0647-6 CrossRefPubMedGoogle Scholar
  22. Ferraiuolo MA, Lee C-S, Ler LW et al (2004) A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci 101:4118–4123.  https://doi.org/10.1073/pnas.0400933101 CrossRefPubMedGoogle Scholar
  23. Gaillard H, Herrera-Moyano E, Aguilera A (2013) Transcription-associated genome instability. Chem Rev 113:8638–8661.  https://doi.org/10.1021/cr400017y CrossRefPubMedGoogle Scholar
  24. Hiller M, Zhang Z, Backofen R, Stamm S (2007) Pre-mRNA secondary structures influence exon recognition. PLoS Genet 3:e204.  https://doi.org/10.1371/journal.pgen.0030204 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hooks KB, Delneri D, Griffiths-Jones S (2014) Intron evolution in saccharomycetaceae. Genome Biol Evol 6:2543–2556.  https://doi.org/10.1093/gbe/evu196 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hossain MA, Rodriguez CM, Johnson TL (2011) Key features of the two-intron Saccharomyces cerevisiae gene SUS1 contribute to its alternative splicing. Nucleic Acids Res 39:8612–8627.  https://doi.org/10.1093/nar/gkr497 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hubé F, Ulveling D, Sureau A et al (2017) Short intron-derived ncRNAs. Nucleic Acids Res 45:4768–4781.  https://doi.org/10.1093/nar/gkw1341 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jo U, Cai W, Wang J et al (2016) PCNA-dependent cleavage and degradation of SDE2 regulates response to replication stress. PLoS Genet 12:e1006465.  https://doi.org/10.1371/journal.pgen.1006465 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Johnson TL, Vilardell J (2012) Regulated pre-mRNA splicing: the ghostwriter of the eukaryotic genome. Biochim Biophys Acta - Gene Regul Mech 1819:538–545.  https://doi.org/10.1016/j.bbagrm.2011.12.011 CrossRefGoogle Scholar
  30. Kannan R, Hartnett S, Voelker RB et al (2013) Intronic sequence elements impede exon ligation and trigger a discard pathway that yields functional telomerase RNA in fission yeast. Genes Dev 27:627–638.  https://doi.org/10.1101/gad.212738.112 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karaduman R, Chanarat S, Pfander B, Jentsch S Error-prone splicing controlled by the ubiquitin relative Hub1. Mol Cell.  https://doi.org/10.1016/j.molcel.2017.06.021
  32. Keshwani MM, Aubol BE, Fattet L et al (2015) Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function. Biochem J 466:311 LP-322CrossRefGoogle Scholar
  33. Kilchert C, Wittmann S, Passoni M et al (2015) Regulation of mRNA levels by decay-promoting introns that recruit the exosome specificity factor Mmi1. Cell Rep 13:2504–2515.  https://doi.org/10.1016/j.celrep.2015.11.026 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim N, Jinks-Robertson S (2012) Transcription as a source of genome instability. Nat Rev Genet 13:204–214.  https://doi.org/10.1038/nrg3152 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Krainer A (1997) Eukaryotic mRNA processing. Frontiers in Molecular Biology, IRL Press (Oxford University Press), New York. ISBN: 0-19-963418-1 Google Scholar
  36. Kuhn AN, van Santen MA, Schwienhorst A et al (2009) Stalling of spliceosome assembly at distinct stages by small-molecule inhibitors of protein acetylation and deacetylation. RNA 15:153–175.  https://doi.org/10.1261/rna.1332609 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kupfer DM, Drabenstot SD, Buchanan KL et al (2004) Introns and splicing elements of five diverse fungi. Eukaryot Cell 3:1088–1100.  https://doi.org/10.1128/EC.3.5.1088-1100.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323.  https://doi.org/10.1146/annurev-biochem-060614-034316 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lee HC, Choe J, Chi S-G, Kim YK (2009) Exon junction complex enhances translation of spliced mRNAs at multiple steps. Biochem Biophys Res Commun 384:334–340.  https://doi.org/10.1016/j.bbrc.2009.04.123 CrossRefPubMedGoogle Scholar
  40. Lenasi T, Peterlin BM, Barboric M (2011) Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J Biol Chem 286:22758–22768.  https://doi.org/10.1074/jbc.M111.235077 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lin S-L, Miller JD, Ying S-Y (2006) Intronic MicroRNA (miRNA). J Biomed Biotechnol 2006:26818.  https://doi.org/10.1155/JBB/2006/26818 CrossRefPubMedPubMedCentralGoogle Scholar
  42. McKay SL, Johnson TL (2010) A bird’s-eye view of post-translational modifications in the spliceosome and their roles in spliceosome dynamics. Mol Biosyst 6:2093–2102.  https://doi.org/10.1039/c002828b CrossRefPubMedPubMedCentralGoogle Scholar
  43. Melamed Z, Levy A, Ashwal-Fluss R et al (2013) Alternative splicing regulates biogenesis of miRNAs located across exon-Intron junctions. Mol Cell 50:869–881.  https://doi.org/10.1016/j.molcel.2013.05.007 CrossRefPubMedGoogle Scholar
  44. Mishra SK, Ammon T, Popowicz GM et al (2011) Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474:173–178.  https://doi.org/10.1038/nature10143 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Misteli T (1999) RNA splicing: what has phosphorylation got to do with it?. Curr Biol 9:R198–R200.  https://doi.org/10.1016/S0960-9822(99)80128-6 CrossRefPubMedGoogle Scholar
  46. Misteli T, Spector DL (1997) Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol 7:135–138.  https://doi.org/10.1016/S0962-8924(96)20043-1 CrossRefPubMedGoogle Scholar
  47. Moabbi AM, Agarwal N, El Kaderi B, Ansari A (2012) Role for gene looping in intron-mediated enhancement of transcription. Proc Natl Acad Sci USA 109:8505–8510.  https://doi.org/10.1073/pnas.1112400109 CrossRefPubMedGoogle Scholar
  48. Muniz L, Davidson L, West S (2015) Poly(A) polymerase and the nuclear poly(A) binding protein, PABPN1, coordinate the splicing and degradation of a subset of human pre-mRNAs. Mol Cell Biol 35:2218–2230.  https://doi.org/10.1128/MCB.00123-15 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nott A, Le Hir H, Moore MJ (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18:210–222.  https://doi.org/10.1101/gad.1163204 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Parenteau J, Durand M, Véronneau S et al (2008) Deletion of many yeast Introns reveals a minority of genes that require splicing for function. Mol Biol Cell 19:1932–1941CrossRefPubMedPubMedCentralGoogle Scholar
  51. Parenteau J, Durand M, Morin G et al (2017) Introns within ribosomal protein genes regulate the production and function of yeast ribosomes. Cell 147:320–331.  https://doi.org/10.1016/j.cell.2011.08.044 CrossRefGoogle Scholar
  52. Pillon MC, Stanley RE (2017) Nuclease integrated kinase super assemblies (NiKs) and their role in RNA processing. Curr Genet.  https://doi.org/10.1007/s00294-017-0749-9 PubMedCrossRefGoogle Scholar
  53. Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007a) Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27:928–937.  https://doi.org/10.1016/j.molcel.2007.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007b) Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol 5:e90.  https://doi.org/10.1371/journal.pbio.0050090 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pozzi B, Bragado L, Will CL et al (2017) SUMO conjugation to spliceosomal proteins is required for efficient pre-mRNA splicing. Nucleic Acids Res 45:6729–6745.  https://doi.org/10.1093/nar/gkx213 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Romfo CM, Alvarez CJ, van Heeckeren WJ et al (2000) Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Mol Cell Biol 20:7955–7970.  https://doi.org/10.1128/MCB.20.21.7955-7970.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Russell CS, Ben-Yehuda S, Dix I et al (2000) Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA 6:1565–1572CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shaul O (2017) How introns enhance gene expression. Int J Biochem Cell Biol 91:145–155.  https://doi.org/10.1016/j.biocel.2017.06.016 CrossRefPubMedGoogle Scholar
  59. Shefer K, Sperling J, Sperling R (2014) The supraspliceosome—a multi-task machine for regulated pre-mRNA processing in the cell nucleus. Comput Struct Biotechnol J 11:113–122.  https://doi.org/10.1016/j.csbj.2014.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shi Y, Manley JL (2007) A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol Cell 28:79–90.  https://doi.org/10.1016/j.molcel.2007.08.028 CrossRefPubMedGoogle Scholar
  61. Shomron N, Levy C (2009) MicroRNA-biogenesis and pre-mRNA splicing crosstalk. J Biomed Biotechnol.  https://doi.org/10.1155/2009/594678 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sperling J, Azubel M, Sperling R (2008) Structure and function of the pre-mRNA splicing machine. Structure 16:1605–1615.  https://doi.org/10.1016/j.str.2008.08.011 CrossRefPubMedGoogle Scholar
  63. Stamm S (2008) Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem 283:1223–1227.  https://doi.org/10.1074/jbc.R700034200 CrossRefPubMedGoogle Scholar
  64. Stepankiw N, Raghavan M, Fogarty EA et al (2015) Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res 43:8488–8501CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sugioka-Sugiyama R, Sugiyama T (2011) Sde2: a novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe. Biochem Biophys Res Commun 406:444–448.  https://doi.org/10.1016/j.bbrc.2011.02.068 CrossRefPubMedGoogle Scholar
  66. Thakran P, Pandit PA, Datta S et al (2017) Sde2 is an intron-specific pre-mRNA splicing regulator activated by ubiquitin-like processing. EMBO J.  https://doi.org/10.15252/embj.201796751 PubMedCrossRefGoogle Scholar
  67. Vijaykrishna N, Melangath G, Kumar R et al (2016) The fission yeast pre-mRNA processing factor 18 (prp18+) has intron-specific splicing functions with links to G1-S cell cycle progression. J Biol Chem.  https://doi.org/10.1074/jbc.M116.751289 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718.  https://doi.org/10.1016/j.cell.2009.02.009 CrossRefPubMedGoogle Scholar
  69. Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. 802–813.  https://doi.org/10.1261/rna.876308.802
  70. Wang J, Tadeo X, Hou H et al (2014) Tls1 regulates splicing of shelterin components to control telomeric heterochromatin assembly and telomere length. Nucleic Acids Res 42:11419–11432.  https://doi.org/10.1093/nar/gku842 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Warf MB, Berglund JA (2010) The role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 35:169–178.  https://doi.org/10.1016/j.tibs.2009.10.004 CrossRefPubMedGoogle Scholar
  72. Webb CJ, Lakhe-Reddy S, Romfo CM, Wise JA (2005) Analysis of mutant phenotypes and splicing defects demonstrates functional collaboration between the large and small subunits of the essential splicing factor U2AF in vivo. Mol Biol Cell 16:584–596.  https://doi.org/10.1091/mbc.E04-09-0768 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3:a003707.  https://doi.org/10.1101/cshperspect.a003707 CrossRefPubMedPubMedCentralGoogle Scholar
  74. William Roy S, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211CrossRefGoogle Scholar
  75. Yang Y, Zhan L, Zhang W et al (2011) RNA secondary structure in mutually exclusive splicing. Nat Struct Mol Biol 18:159CrossRefPubMedGoogle Scholar
  76. Zanini IMY, Soneson C, Lorenzi LE, Azzalin CM (2017) Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion. J Cell Sci 130:767–778.  https://doi.org/10.1242/jcs.194068 CrossRefPubMedGoogle Scholar
  77. Zhao C, Hamilton T (2007) Introns regulate the rate of unstable mRNA decay. J Biol Chem 282:20230–20237.  https://doi.org/10.1074/jbc.M700180200 CrossRefPubMedGoogle Scholar
  78. Zhong X-Y, Ding J-H, Adams JA et al (2009) Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev 23:482–495.  https://doi.org/10.1101/gad.1752109 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhu T, Niu DK (2013) Mechanisms of intron loss and gain in the fission yeast schizosaccharomyces. PLoS One.  https://doi.org/10.1371/journal.pone.0061683 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological SciencesIndian Institute of Science Education and Research (IISER) MohaliPunjabIndia

Personalised recommendations