Advertisement

Current Genetics

, Volume 64, Issue 4, pp 959–964 | Cite as

A breath of information: the volatilome

  • M. Mansurova
  • Birgitta E. Ebert
  • Lars M. Blank
  • Alfredo J. Ibáñez
Technical Notes

Abstract

Volatile organic compounds (VOCs) are small molecular mass substances, which exhibit low boiling points and high-vapour pressures. They are ubiquitous in nature and produced by almost any organism of all kingdoms of life. VOCs are involved in many inter- and intraspecies interactions ranging from antimicrobial or fungal effects to plant growth promotion and human taste perception of fermentation products. VOC profiles further reflect the metabolic or phenotypic state of the living organism that produces them. Hence, they can be exploited for non-invasive medicinal diagnoses or industrial fermentation control. Here, we introduce the reader to these diverse applications associated with the monitoring and analysis of VOC emissions. We also present our vision of real-time VOC analysis enabled by newly developed analytical techniques, which will further broaden the use of VOCs in even wider applications. Hence, we foresee a bright future for VOC research and its associated fields of applications.

Keywords

Volatilome Volatome Volatile organic compounds (VOCs) Mass spectrometry (MS) Secondary electrospray ionization (SESI) Pheromones 

Notes

Acknowledgements

M.M. gratefully acknowledges the financial support of the Programa Nacional de Innovacion Agraria, PNIA (PNIA-16452-2016).

References

  1. Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T (2014) The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 8(3):034001.  https://doi.org/10.1088/1752-7155/8/3/034001 CrossRefPubMedGoogle Scholar
  2. Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products—an overview. Compr Rev Food Sci Food Saf 15:73–91CrossRefGoogle Scholar
  3. Araki T, Toh-e A, Kikuchi Y, Watanabe CK, Hachiya T, Noguchi K, Terashima I, Uesono Y (2015) Tetracaine, a local anesthetic, preferentially induces translational inhibition with processing body formation rather than phosphorylation of eIF2α in yeast. Curr Genet 61(1):43–53.  https://doi.org/10.1007/s00294-014-0443-0 CrossRefPubMedGoogle Scholar
  4. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabyashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515CrossRefPubMedGoogle Scholar
  5. Arimura G, Ozawa T, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98CrossRefPubMedGoogle Scholar
  6. Babikova Z, Johnson D, Bruce T, Pickett JA, Gilbert L (2013) How rapid is aphid-induced signal transfer between plants via common mycelial networks? Commun Integr Biol 6(6):e25904.  https://doi.org/10.4161/cib.25904 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815CrossRefPubMedGoogle Scholar
  8. Barrios-Collado C, García-Gómez D, Zenobi R, Vidal-de-Miguel G, Ibáñez AJ, Martinez-Lozano Sinues (2016) Capturing in vivo plant metabolism by real-time analysis of low to high molecular weight volatiles. Anal Chem 88(4):2406–2412.  https://doi.org/10.1021/acs.analchem.5b04452 CrossRefPubMedGoogle Scholar
  9. Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets U, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emissions of LOX products. Plant Cell Environ 28:1334–1343CrossRefGoogle Scholar
  10. Bennett JW, Inamdar AA (2015) Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins (Basel) 7(9):3785–3804.  https://doi.org/10.3390/toxins7093785
  11. Berchtold C, Bosilkovska M, Daali Y, Walder B, Zenobi R (2014) Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrom Rev 33(5):394–413.  https://doi.org/10.1002/mas.21393 CrossRefPubMedGoogle Scholar
  12. Bicchi C (2004) Special issue: analysis of flavors and fragrances. J Chromatogr Sci 42:401CrossRefGoogle Scholar
  13. Bicchi C, Cordero C, Iori C, Rubiolo P, Sandra P (2000) Headspace sorptive extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J High Res Chromatogr 23:539–546CrossRefGoogle Scholar
  14. Blake RS, Monks PS, Ellis AM (2009) Proton transfer reaction mass spectrometry. Chem Rev 109:861–896.  https://doi.org/10.1021/cr800364q CrossRefPubMedGoogle Scholar
  15. Bonvehí JS (2005) Investigation of aromatic compounds in roasted cocoa powder. Eur Food Res Technol 221:19–29.  https://doi.org/10.1007/s00217-005-1147-y CrossRefGoogle Scholar
  16. Bos LD, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog 9(5):e1003311.  https://doi.org/10.1371/journal.ppat.1003311 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Buettner F, Jay K, Wischnewski H, Stadelmann T, Saad S, Jefimovs K, Mansurova M, Gerez J, Azzalin CM, Dechant R, Ibáñez AJ (2017) Non-targeted metabolomics approach reveals two distinct types of metabolomics response to telomerase dysfunction in S. cerevisiae. Metabolomics 13:53.  https://doi.org/10.1007/s11306-017-1195-x CrossRefGoogle Scholar
  18. Clavijo McCormick A, Gershenzon J, Unsicker SB (2014) Little peaks with big effects: establishing the role of minor plant volatiles in plant-insect interactions. Plant Cell Environ 37(8):1836–1844.  https://doi.org/10.1111/pce.12357 CrossRefPubMedGoogle Scholar
  19. Considine PJ, Flynn N, Patching JW (1977) Ethylene production by soil microorganisms. Appl Environ Microbiol 33(4):977–979PubMedPubMedCentralGoogle Scholar
  20. Das MK, Bishwal SC, Das A, Dabral D, Varshney A, Badireddy VK, Nanda R (2014) Investigation of gender-specific exhaled breath volatome in humans by GCxGC–TOF–MS. Anal Chem 86(2):1229–1237.  https://doi.org/10.1021/ac403541a CrossRefPubMedGoogle Scholar
  21. de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257CrossRefPubMedGoogle Scholar
  22. de Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410(6828):577–580CrossRefPubMedGoogle Scholar
  23. Digiacomo F, Girelli G, Aor B, Marchioretti C, Pedrotti M, Perli T, Tonon E, Valentini V, Avi D, Ferrentino G, Dorigato A, Torre P, Jousson O, Mansy SS, Del Bianco C (2014) Ethylene-producing bacteria that ripen fruit. ACS Synth Biol 3(12):935–938.  https://doi.org/10.1021/sb5000077 CrossRefPubMedGoogle Scholar
  24. Dittrich P, Ibáñez AJ (2015) Analysis of metabolites in single cells-what is the best micro-platform? Electrophoresis 36(18):2196–2206.  https://doi.org/10.1002/elps.201500045
  25. Dobson HEM (1991) Analysis of flower and pollen volatiles. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, vol 12. Springer, Berlin, pp 231–251Google Scholar
  26. Ebel RC, Mattheis JP, Buchanan DA (1995) Drought stress of apple trees alters leaf emissions of volatile compounds. Physiol Plant 95:709–712CrossRefGoogle Scholar
  27. Ebert BE, Halbfeld C, Blank LM (2016) Exploration and exploitation of the yeast volatilome. Curr Metabol 4:1–17.  https://doi.org/10.2174/2213235X04666160818151119 CrossRefGoogle Scholar
  28. Filipiak W, Mochalski P, Filipiak A, Ager C, Cumeras R, Davis CE, Agapiou A, Unterkofler K, Troppmair J (2016) A compendium of volatile organic compounds (VOCs) released by human cell lines. Curr Med Chem 23(20):2112–2131CrossRefPubMedPubMedCentralGoogle Scholar
  29. Flamini G, Cioni PL, Morelli I (2002) Differences in the fragrances of pollen and different floral parts of male and female flowers of Laurus nobilis. J Agric Chem 50:4647–4652CrossRefGoogle Scholar
  30. Frauendorfer F, Schieberle P (2006) Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. J Agric Food Chem 54:5521–5529CrossRefPubMedGoogle Scholar
  31. Garbeva P, Hordijk C, Gerards S, de Boer W (2014) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87(3):639–649.  https://doi.org/10.1111/1574-6941.12252 CrossRefPubMedGoogle Scholar
  32. Gomase VS, Changbhale SS, Patil SA, Kale KV (2008) Metabolomics. Curr Drug Metab 9(1):89–98CrossRefPubMedGoogle Scholar
  33. Gomez-Diaz C, Benton R (2013) The joy of sex pheromones. EMBO Rep 14(10):874–883.  https://doi.org/10.1038/embor.2013.140 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gowda GAN, Djukovic D (2014) Overview of mass spectrometry-based metabolomics: opportunities and challenges. In: Raftery D (ed) Mass spectrometry in metabolomics. Methods in molecular biology (methods and protocols), vol 1198. Humana Press, New York, pp 3–12.  https://doi.org/10.1007/978-1-4939-1258-2_1
  35. Heddergott C, Calvo AM, Latgé JP (2014) The volatome of Aspergillus fumigatus. Eukaryot Cell 13(8):1014–1025.  https://doi.org/10.1128/EC.00074-14 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Huang M, Hull CM (2017) Sporulation: how to survive on planet Earth (and beyond). Curr Genet 63(5):831–838.  https://doi.org/10.1007/s00294-017-0694-7 CrossRefPubMedGoogle Scholar
  37. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459.  https://doi.org/10.1038/nrm.2016.25 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kaiser R (1991) Trapping, investigation and reconstitution of flower scents. In: Mueller PM, Lamparsky D (eds) Perfumes: art, science, technology. Elsevier Applied Science, London, pp 213–250Google Scholar
  39. Kessler A, Baldwin IT (2001) Defensive function of herbivore induced plant volatile emissions in nature. Science 291:2141–2144CrossRefPubMedGoogle Scholar
  40. Knauer AC, Schiestl FP (2017) The effect of pollinators and herbivores on selection for floral signals: a case study in Brassica rapa. Evol Ecol 31(2):285–304CrossRefGoogle Scholar
  41. Kücklich M, Möller M, Marcillo A, Einspanier A, Weiß BM, Birkemeyer C, Widdig A (2017) Different methods for volatile sampling in mammals. PLoS One 12(8):e0183440.  https://doi.org/10.1371/journal.pone.0183440 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lemfack MC, Gohlke BO, Toguem SMT, Preissner S, Piechulla B, Preissner R (2017) mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkx1016 PubMedCentralGoogle Scholar
  43. Li X, Martinez-Lozano Sinues P, Dallmann R, Bregy L, Hollmén M, Proulx S, Brown SA, Detmar M, Kohler M, Zenobi R (2015) Drug pharmacokinetics determined by real-time analysis of mouse breath. Angew Chem Int Ed Engl 54(27):7815–7818.  https://doi.org/10.1002/anie.201503312 CrossRefPubMedGoogle Scholar
  44. Lubes G, Goodarzi M (2017) Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chem Rev 117(9):6399–6422.  https://doi.org/10.1021/acs.chemrev.6b00698 CrossRefPubMedGoogle Scholar
  45. Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380.  https://doi.org/10.1039/c1np00021g CrossRefPubMedGoogle Scholar
  46. Magi E, Bono L, Di Carro M (2012) Characterization of cocoa liquors by GC–MS and LC–MS/MS: focus on alkylpyrazines and flavanols. J Mass Spectrom 47(9):1191–1197.  https://doi.org/10.1002/jms.3034 CrossRefPubMedGoogle Scholar
  47. Maniewski R, Liebert A, Kacprzak M, Zbiec A (2004) Selected application of near-infrared optical methods in medical diagnosis. Opto-Electron Rev 12:255–262Google Scholar
  48. Medina A, Schmidt-Heydt M, Rodríguez A, Parra R, Geisen R, Magan N (2015) Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr Genet 61(3):325–334.  https://doi.org/10.1007/s00294-014-0455-9 CrossRefPubMedGoogle Scholar
  49. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269.  https://doi.org/10.1038/nrm3314 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pattrick JG, Shepherd T, Hoppitt W, Plowman NS, Willmer P (2017) A dual function for 4-methoxybenzaldehyde in Petasites fragrans? Pollinator-attractant and ant-repellent. Arthropod Plant Interact 11(5):623–627.  https://doi.org/10.1007/s11829-017-9519-3 CrossRefGoogle Scholar
  51. Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapour and breath by gas–liquid partition chromatography. Proc Natl Acad Sci USA 68:2374–2376CrossRefPubMedGoogle Scholar
  52. Phillips M, Cataneo RN, Chaturvedi A, Kaplan PD, Libardoni M, Mundada M, Patel U, Zhang X (2013) Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS One 8(9):e75274.  https://doi.org/10.1371/journal.pone.0075274 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243CrossRefPubMedGoogle Scholar
  54. Primrose SB, Dilworth MJ (1976) Ethylene production by bacteria. J Gen Microbiol 93(1):177–181CrossRefPubMedGoogle Scholar
  55. Queralto N, Berliner AN, Goldsmith B, Martino R, Rhodes P, Lim SH (2014) Detecting cancer by breath volatile organic compound analysis: a review of array-based sensors. J Breath Res 8(2):027112.  https://doi.org/10.1088/1752-7155/8/2/027112 CrossRefPubMedGoogle Scholar
  56. Rattray NJ, Hamrang Z, Trivedi DK, Goodacre R, Fowler SJ (2014) Taking your breath away: metabolomics breathes life in to personalized medicine. Trends Biotechnol 32(10):538–548.  https://doi.org/10.1016/j.tibtech.2014.08.003 CrossRefPubMedGoogle Scholar
  57. Rodriguez-Campos J, Escalona-Buendía HB, Orozco-Avila I, Lugo-Cervantes E, Jaramillo-Flores ME (2011) Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res Int 44:250–258CrossRefGoogle Scholar
  58. Rodriguez-Campos J, Escalona-Buendía HB, Contreras-Ramos SM, Orozco-Avila I, Jaramillo-Flores E, Lugo-Cervantes E (2012) Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem 132:277–288CrossRefPubMedGoogle Scholar
  59. Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259CrossRefPubMedGoogle Scholar
  60. Rubiolo P, Liberto E, Sgorbini B, Russo R, Veuthey JL, Bicchi C (2008) Fast-GC conventional quadrupole mass spectrometry in essential oil analysis. J Sep Sci 31:1074–1084.  https://doi.org/10.1002/jssc.200700577 CrossRefPubMedGoogle Scholar
  61. Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P (2016) Microbial small talk: volatiles in fungal–bacterial interactions. Front Microbiol 6:1495.  https://doi.org/10.3389/fmicb.2015.01495 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54(4):712–732.  https://doi.org/10.1111/j.1365-313X.2008.03446.x CrossRefPubMedGoogle Scholar
  63. Sethi S, Nanda R, Chakraborty T (2013) Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 26(3):462–447.  https://doi.org/10.1128/CMR.00020-13
  64. Sévin DC, Kuehne A, Zamboni N, Sauer U (2015) Biological insights through nontargeted metabolomics. Curr Opin Biotechnol 34:1–8.  https://doi.org/10.1016/j.copbio.2014.10.001 CrossRefPubMedGoogle Scholar
  65. Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769–769CrossRefGoogle Scholar
  66. Singh KD, Vidal-de-Miguel G, Gaugg MT, Ibáñez AJ, Zenobi R, Kohler M, Frey U, Sinues PM-L (2017) Translating secondary electrospray ionization–high resolution mass spectrometry to the clinical environmentGoogle Scholar
  67. Sinha R, Khot LR, Schroeder BK, Si Y (2017) Rapid and non-destructive detection of Pectobacterium carotovorum causing soft rot in stored potatoes through volatile biomarkers sensing. Crop Protect 93:122.  https://doi.org/10.1016/j.cropro.2016.11.028 CrossRefGoogle Scholar
  68. Tejero Rioseras A, Gomez DG, Ebert BE, Blank LM, Ibáñez AJ, Sinues PM (2017) Comprehensive real-time analysis of the yeast volatilome. Sci Rep 7(1):14236.  https://doi.org/10.1038/s41598-017-14554-y CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tholl D, Boland W, Hansel A, Loreto F, Röse US, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45(4):540–560CrossRefPubMedGoogle Scholar
  70. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host seeking parasitic wasps. Science 250:1251–1253CrossRefPubMedGoogle Scholar
  71. Wicher D (2015) Olfactory signaling in insects. Prog Mol Biol Transl Sci 130:37–54.  https://doi.org/10.1016/bs.pmbts.2014.11.002 CrossRefPubMedGoogle Scholar
  72. Wojtas J, Bielecki Z, Stacewicz T, Mikolajczyk J, Nowakowski M (2012) Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron Rev 20:26–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • M. Mansurova
    • 1
  • Birgitta E. Ebert
    • 2
  • Lars M. Blank
    • 2
  • Alfredo J. Ibáñez
    • 1
  1. 1.Core facility for Omics Research and Applied Biotechnology (ICOBA)Pontificia Universidad Católica del PerúLimaPeru
  2. 2.Institute of Applied Microbiology, iAMB, Aachen Biology and Biotechnology, ABBtRWTH Aachen UniversityAachenGermany

Personalised recommendations