Current Genetics

, Volume 64, Issue 4, pp 853–869 | Cite as

Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides

  • J. Alberto Patiño-Medina
  • Guadalupe Maldonado-Herrera
  • Carlos Pérez-Arques
  • Viridiana Alejandre-Castañeda
  • Nancy Y. Reyes-Mares
  • Marco I. Valle-Maldonado
  • Jesus Campos-García
  • Rafael Ortiz-Alvarado
  • Irvin E. Jácome-Galarza
  • Martha I. Ramírez-Díaz
  • Victoriano Garre
  • Victor Meza-CarmenEmail author
Original Article


Mucor circinelloides is a dimorphic fungus used to study cell differentiation that has emerged as a model to characterize mucormycosis. In this work, we identified four ADP-ribosylation factor (Arf)-encoding genes (arf1–arf4) and study their role in the morphogenesis and virulence. Arfs are key regulators of the vesicular trafficking process and are associated with both growth and virulence in fungi. Arf1 and Arf2 share 96% identity and Arf3 and Arf4 share 89% identity, which suggests that the genes arose through gene-duplication events in M. circinelloides. Transcription analysis revealed that certain arf genes are affected by dimorphism of M. circinelloides, such as the arf2 transcript, which was accumulated during yeast development. Therefore, we created knockout mutants of four arf genes to evaluate their function in dimorphism and virulence. We found that both arf1 and arf2 are required for sporulation, but these genes also perform distinct functions; arf2 participates in yeast development, whereas arf1 is involved in aerobic growth. Conversely, arf3 and arf4 play only minor roles during aerobic growth. Moreover, we observed that all single arf-mutant strains are more virulent than the wild-type strain in mouse and nematode models, with the arf3 mutant being most virulent. Lastly, arf1/arf2 and arf3/arf4 double mutations produced heterokaryon strains that did not reach the homokaryotic state, indicating that these genes participate in essential and redundant functions. Overall, this work reveals that Arfs proteins regulate important cellular processes in M. circinelloides such as morphogenesis and virulence, laying the foundation to characterize the molecular networks underlying this regulation.


ADP-ribosylation factor Arf protein Fungal virulence Mucor Secretion Vesicle trafficking 



This work was supported by grants from Coordinación de la Investigación Científica, UMSNH, México (2.6, 2.35), Consejo Nacional de Ciencia y Tecnología, México (CONACYT; 181747, 167071, and 256119), and Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, Spain (19339/PI/14). JA P-M, G M-H, MI V-M, and NY R-M were supported by postgraduate fellowships from CONACYT and CP-A by Ministerio de Educación, Cultura y Deporte of Spain (FPU-14/01832).

Author contributions

JAP-M, GM-H, MIV-M, CP-A, VA-C, NYR-M, RO-A, data acquisition and interpretation; RO-A, IEJ-G, JC-G, MIR-D, VG, reagents, critical analysis, and revision of the article for intellectual content; MIR-D, VG, VM-C, conception and design of the work and data analysis and interpretation; VM-C, drafting of the article.

Compliance with ethical standards

Conflict of interest

All authors declared that they have no potential conflict of interest.

Research involving human/animal participants

This article does not contain any studies with human participants.

Supplementary material

294_2017_798_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1309 KB)


  1. Ackema KB, Hench J, Böckler S, Wang SC, Sauder U, Mergentaler H, Westermann B, Bard F, Frank S, Spang A (2014) The small GTPase Arf1 modulates mitochondrial morphology and function. EMBO J 33:2659–2675CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal G, Subramani S (2013) Emerging role of the endoplasmic reticulum in peroxisome biogenesis. Front Physiol 4:286CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnau J, Strøman P (1993) Gene replacement and ectopic integration in the zygomycete Mucor circinelloides. Curr Genet 23:542–546CrossRefPubMedGoogle Scholar
  4. Avalos J, Limón MC (2015) Biological roles of fungal carotenoids. Curr Genet 61:309–324CrossRefPubMedGoogle Scholar
  5. Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69CrossRefPubMedGoogle Scholar
  6. Benito EP, Campuzano V, López-Matas MA, De Vicente JI, Eslava A (1995) Isolation, characterization and transformation, by autonomous replication, of Mucor circinelloides OMPdecase-deficient mutants. Mol Gen Genet 248:126–135CrossRefPubMedGoogle Scholar
  7. Binder U, Maurer E, Lass-Flör lC (2014) Mucormycosis from the pathogens to the disease. Clin Microbiol Infect 20(Suppl 6):60–66CrossRefGoogle Scholar
  8. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  9. Casadevall A, Nosanchuk JD, Williamson P, Rodrigues ML (2009) Vesicular transport across the fungal cell wall. Trends Microbiol 17:158–162CrossRefPubMedPubMedCentralGoogle Scholar
  10. Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004, RE13Google Scholar
  11. Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM et al (2016) Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Curr Biol 26:1577–1584CrossRefPubMedPubMedCentralGoogle Scholar
  12. De laCruz JO, García-Soto J, Uriostegui C, Carranza L, Novoa G, Reyna G, Martínez-Cadena G (2007) Differential expression of Rho1GTPase and Rho3GTPase during isotropic and polarized growth of Mucor circinelloides. Can J Microbiol 53:168–176CrossRefPubMedGoogle Scholar
  13. Dijksterhuis J, Molenaar D (2013) Vesicle trafficking via the Spitzenkörper during hyphal tip growth in Rhizoctonia solani. Antonie Van Leeuwenhoek 103:921931CrossRefGoogle Scholar
  14. Epp E, Vanier G, Harcus D, Lee AY, Jansen G, Hallett M, Sheppard DC, Thomas DY, Munro CA, Mullick A, Whiteway M (2010) Reverse genetics in Candida albicans predicts ARF cycling is essential for drug resistance and virulence. PLoS Pathog 6:e1000753CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84:442–446CrossRefPubMedGoogle Scholar
  16. Hsu JW, Lee FJ (2013) Arf3p GTPase is a key regulator of Bud2p activation for invasive growth in Saccharomyces cerevisiae. Mol Biol Cell 24:2328–2339CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huarte‑Bonnet C, Juárez MP, Pedrini P (2015) Oxidative stress in entomopathogenic fungi grown on insect‑like hydrocarbons. Curr Genet 61:289–297CrossRefGoogle Scholar
  18. Jackson CL, Bouvet S (2014) Arfs at a glance. J Cell Sci 127:4103–4109CrossRefPubMedGoogle Scholar
  19. Kahn RA, Gilman AG (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259:6228–6234PubMedGoogle Scholar
  20. Kahn RA, Cherfils J, Elias M, Lovering RC, Munro S, Schurmann A (2006) Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol 172:645–650CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kronstad JW, Attarian R, Cadieux B, Choi J, D’Souza CA, Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, Saikia S, Wang J (2011) Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9:193–203CrossRefPubMedPubMedCentralGoogle Scholar
  22. Labbaoui H, Bogliolo S, Ghugtyal V, Solis NV, Filler SG, Arkowitz RA, Bassilana M (2017) Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathog 13:e1006205CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lambert AA, Perron MP, Lavoie E, Pallotta D (2007) The Saccharomyces cerevisiae Arf3 protein is involved in actin cable and cortical patch formation. FEMS Yeast Res 7:782–795CrossRefPubMedGoogle Scholar
  24. Lee SC, Shaw BD (2008b) Localization and function of ADP ribosylation factor A in Aspergillus nidulans. FEMS Microbiol Lett 283:216–222CrossRefPubMedGoogle Scholar
  25. Lee SC, Schmidtke SN, Dangott LJ, Shaw BD (2008a) Aspergillus nidulans ArfB plays a role in endocytosis and polarized growth. Eukaryot Cell 7:1278–1288CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee SC, Li A, Calo S, Heitman J (2013) Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog 9:e1003625CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lettner T, Zeidler U, Gimona M, Hauser M, Breitenbach M, Bito A (2010) Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance. PLoS One 5:e11993CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lübbehüsen TL, Nielsen J, McIntyre M (2003) Characterization of the Mucor circinelloides life cycle by on-line image analysis. J Appl Microbiol 95:1152–1160CrossRefPubMedGoogle Scholar
  29. Mizuno-Yamasaki E, Rivera-Molina F, Novick P (2012) GTPase networks in membrane traffic. Ann Rev Biochem 81:637–659CrossRefPubMedGoogle Scholar
  30. Moss J, Vaughan M (1998) Molecules in the ARF orbit. J Biol Chem 273:21431–21434CrossRefPubMedGoogle Scholar
  31. Nicolás FE, de Haro JP, Torres-Martínez S, Ruiz-Vázquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44:504–516CrossRefPubMedGoogle Scholar
  32. Ocampo J, Fernandez-Nuñez L, Silva F, Pereyra E, Moreno S, Garre V, Rossi S (2009) A subunit of protein kinase a regulates growth and differentiation in the fungus Mucor circinelloides. Eukaryot Cell 8:933–944CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ocampo J, McCormack B, Navarro E, Moreno S, Garre V, Rossi S (2012) Protein kinase A regulatory subunit isoforms regulate growth and differentiation in Mucor circinelloides: essential role of PKAR4. Eukaryot Cell 11:989–1002CrossRefPubMedPubMedCentralGoogle Scholar
  34. Park HO, Bi E (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71:48–96CrossRefPubMedPubMedCentralGoogle Scholar
  35. Punt PJ, Seiboth B, Weenink XO, van Zeijl C, Lenders M, Konetschny C, Ram AF, Montijn R, Kubicek CP, van den Hondel CAMJJ (2001) Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Mol Microbiol 41:513–525CrossRefPubMedGoogle Scholar
  36. Rangel-Porras RA, Meza-Carmen V, Martinez-Cadena G, Torres-Guzmán JC, González-Hernández GA, Arnau J, Gutiérrez-Corona JF (2005) Molecular analysis of an NAD-dependent alcohol dehydrogenase from the zygomycete Mucor circinelloides. Mol Genet Genomics 274:354–363CrossRefPubMedGoogle Scholar
  37. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA et al (2005) Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 41:634–653CrossRefPubMedGoogle Scholar
  38. Rodríguez-Andrade E, Hernández-Ramírez KC, Díaz-Peréz SP, Díaz-Magaña A, Chávez-Moctezuma MP, Meza-Carmen V, Ortíz-Alvarado R, Cervantes C, Ramírez-Díaz MI (2016) Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence. Antonie Van Leeuwenhoek 109:389–396CrossRefPubMedGoogle Scholar
  39. Roncero MI (1984) Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosylpolyfungin.Carlsberg Res Commun 49:685–690CrossRefGoogle Scholar
  40. Salcedo-Hernandez R, Ruiz-Herrera J (1993) Isolation and characterization of a mycelial cytochrome aa3-deficient mutant and the role of mitochondria in dimorphism of Mucor rouxii. Exp Mycol 17:142–154CrossRefGoogle Scholar
  41. Sambrook J, Russell RW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold spring harbor laboratory press, Cold Spring HarborGoogle Scholar
  42. Sánchez-León E, Bowman B, Seidel C, Fischer R, Novick P, Riquelme M (2015) The Rab GTPase YPT-1 associates with Golgi cisternae and Spitzenkörper microvesicles in Neurospora crassa. Mol Microbiol 95:472–490CrossRefPubMedGoogle Scholar
  43. SecretaríadeAgricultura, G, Desarrollo Rural, Pesca y Alimentación (SAGARPA) (2001) NORMA Oficial Mexicana NOM-062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de la Federación 2:107–167 (In Spanish) Google Scholar
  44. Smaczynska-de Rooij II, Costa R, Ayscough KR (2008) Yeast Arf3p modulates plasma membrane PtdIns(4,5)P2 levels to facilitate endocytosis. Traffic 9:559–573CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stearns T, Kahn RA, Botstein D, Hoyt MA (1990a) ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol Cell Biol 10:6690–6699CrossRefPubMedPubMedCentralGoogle Scholar
  46. Stearns T, Willingham MC, Botstein D, Kahn RA (1990b) ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA 87:1238–1242CrossRefPubMedGoogle Scholar
  47. Stiernagle T (2006) Maintenance of C. elegans. WormBook. edn. The C. elegans Research CommunityGoogle Scholar
  48. Thompson JD, Desmond GH, Toby JG (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  49. Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, Lopez-Fernandez L, Torres-Martínez S, Garre V, Ruiz-Vázquez RM, Nicolás FE (2017) RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS Pathog 13:e1006150CrossRefPubMedPubMedCentralGoogle Scholar
  50. Valle-Maldonado MI, Jácome-Galarza IE, Díaz-Pérez AL, Martínez-Cadena G, Campos-García J, Ramírez-Díaz MI, Reyes-De la Cruz H, Riveros-Rosas H, Díaz-Pérez C, Meza-Carmen V (2015a) Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal Biol 119:1179–1193CrossRefPubMedGoogle Scholar
  51. Valle-Maldonado MI, Jácome-Galarza IE, Gutiérrez-Corona F, Ramírez-Díaz MI, Campos-García J, Meza-Carmen V (2015b) Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides. Mol Biol Rep 42:705–711CrossRefPubMedGoogle Scholar
  52. Van Heeswijck R, Roncero MIG (1984) High frequency transformation of Mucor with recombinant plasmid DNA. Carlsberg Res Commun 49:691–702CrossRefGoogle Scholar
  53. Wang L, Lin X (2012) Morphogenesis in fungal pathogenicity: shape, size, and surface. PLoS Pathog 8:1003027CrossRefGoogle Scholar
  54. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 1:843–846CrossRefGoogle Scholar
  55. Wolff AM, Arnau J (2002) Cloning of Glyceraldehyde-3-phosphate Dehydrogenase-Encoding Genes in Mucor circinelloides (Syn. racemosus) and Use of the gpd1 Promoter for Recombinant Protein Production. Fungal Genet Biol 35:21–29CrossRefPubMedGoogle Scholar
  56. Yorimitsu T, Sato K, Takeuchi M (2014) Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. Front Plant Sci 5:411CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • J. Alberto Patiño-Medina
    • 1
  • Guadalupe Maldonado-Herrera
    • 1
  • Carlos Pérez-Arques
    • 2
  • Viridiana Alejandre-Castañeda
    • 1
  • Nancy Y. Reyes-Mares
    • 1
  • Marco I. Valle-Maldonado
    • 1
  • Jesus Campos-García
    • 1
  • Rafael Ortiz-Alvarado
    • 3
  • Irvin E. Jácome-Galarza
    • 4
  • Martha I. Ramírez-Díaz
    • 1
  • Victoriano Garre
    • 2
  • Victor Meza-Carmen
    • 1
    Email author
  1. 1.Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico BiológicasUniversidad Michoacana de San Nicolás de Hidalgo, Ciudad UniversitariaMoreliaMexico
  2. 2.Departamento de Genética y Microbiología, Facultad de BiologiaUniversidad de MurciaMurciaSpain
  3. 3.Facultad de Químico FarmacobiologíaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  4. 4.Laboratorio Estatal de Salud Pública del Estado de MichoacánMoreliaMexico

Personalised recommendations