Current Genetics

, Volume 64, Issue 4, pp 841–851 | Cite as

Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)

  • Anaïs Hérivaux
  • José L. Lavín
  • Thomas Dugé de Bernonville
  • Patrick Vandeputte
  • Jean-Philippe Bouchara
  • Amandine Gastebois
  • José A. Oguiza
  • Nicolas Papon
Original Article


Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in Saccharomyces cerevisiae. Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially Lipomyces starkeyi, harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.


Two-component systems Cell signaling Histidine kinases Histidine-containing phosphotransfer proteins Response regulators 



We acknowledge Pr. J-P Latgé and Pr. B. Dujon (Institut Pasteur, Paris, France) for fruitful discussions and critical reading of this manuscript. We would like to thank the Department of Energy Joint Genome Institute for making available a large series of yeast genomes and also J. Spatafora, J. Magnuson and D. Cullen as PIs of the MycoCosm program for allowing the use of sequences of Cephaloascus albidus, Cephaloascus fragrans, Blastobotrys (Sympodiomyces) attinorum, and Blastobotrys (Trichomonascus) petasosporus. J.L.L. thanks MINECO for the Severo Ochoa Excellence Accreditation (SEV-2016-0644). J.A.O. is supported by research project AGL2011-55971-R of the Spanish National Research Plan and by additional institutional support from the Public University of Navarre.

Author contributions

AH, TDDB and PV compiled all sequences. JLL and JAO performed phylogenetic analyses. AG and NP conceived and managed the project. NP and JPB wrote the manuscript.

Supplementary material

294_2017_797_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1512 KB)


  1. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 55:539–552Google Scholar
  2. Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 2:458–459CrossRefGoogle Scholar
  3. Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116CrossRefPubMedGoogle Scholar
  4. Bem AE et al (2015) Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 10:213–224Google Scholar
  5. Benanti JA (2016) Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity. Curr Genet 62(2):271–276CrossRefPubMedGoogle Scholar
  6. Butler G (2010) Fungal sex and pathogenesis. Clin Microbiol Rev 23(1):140–159Google Scholar
  7. Calera JA, Calderone R (1999) Histidine kinase, two-component signal transduction proteins of Candida albicans and the pathogenesis of candidosis. Mycoses 42(Suppl 2):49–53CrossRefGoogle Scholar
  8. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  9. Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chapeland-Leclerc F et al (2007) Differential involvement of histidine kinase receptors in pseudohyphal development, stress adaptation, and drug sensitivity of the opportunistic yeast Candida lusitaniae. Eukaryot Cell 6:1782–1794CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439CrossRefGoogle Scholar
  12. Corrochano LM et al (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Current Biol 26:1577–1584CrossRefGoogle Scholar
  13. Day AM et al (2017) Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. PLoS Pathog 13:e1006131CrossRefPubMedPubMedCentralGoogle Scholar
  14. Defosse TA et al (2015) Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 95:914–924Google Scholar
  15. Dereeper A et al (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469Google Scholar
  16. Derouiche A, Shi L, Kalantari A, Mijakovic I (2016) Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common? Curr Genet 62(1):67–70CrossRefPubMedGoogle Scholar
  17. Dujon BA, Louis EJ. (2017) Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics. 206:717–750Google Scholar
  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fassler JS, West AH (2013) Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Eukaryot Cell 12:1052–1060CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferris HU et al (2011) The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure 19:378–385Google Scholar
  21. Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230CrossRefPubMedGoogle Scholar
  22. Foureau E et al (2014) Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii. Fungal Genet Biol 65:25–36CrossRefPubMedGoogle Scholar
  23. Furukawa K, Randhawa K, Kaur H, Mondal AK, Hohmann S (2012) Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Lett 586:2417–2422CrossRefPubMedGoogle Scholar
  24. Gregori C et al (2007) The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker’s yeast. Eukaryot Cell 6:1635–1645CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  26. Gushchin I et al (2017) Mechanism of transmembrane signaling by sensor histidine kinases. Science 356(6342):eaah6345CrossRefPubMedGoogle Scholar
  27. He XJ, Mulford KE, Fassler JS (2009) Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot Cell. 8(5):768–778Google Scholar
  28. Hérivaux A et al (2016) Major sensing proteins in pathogenic fungi: the hybrid histidine kinase family. PLoS Pathog 12:e1005683CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hérivaux A et al (2017) The identification of phytohormone receptor homologs in early diverging fungi suggests a role for plant sensing in land colonization by fungi. MBio. 8(1):e01739–e01716CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hittinger CT et al (2015) Genomics and the making of yeast biodiversity. Curr Opin Genet Dev 35:100–109CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45CrossRefPubMedGoogle Scholar
  32. Jacob S, Foster AJ, Yemelin A, Thines E. 2014. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. Microbiologyopen 3:668–687Google Scholar
  33. Lavín JL, Ramírez L, Ussery DW, Pisabarro AG, Oguiza JA (2010) Genomic analysis of two-component signal transduction proteins in Basidiomycetes. J Mol Microbiol Biotechnol 18:63–73CrossRefPubMedGoogle Scholar
  34. Lawry SM et al (2017) Fludioxonil induces Drk1, a fungal group III Hybrid Histidine Kinase, to dephosphorylate its downstream target, Ypd1. Antimicrob Agents Chemother 61(2):e01414–e01416PubMedPubMedCentralGoogle Scholar
  35. Li S et al (1998) The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J 17:6952–6962CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li D, Agrellos OA, Calderone R (2010) Histidine kinases keep fungi safe and vigorous. Curr Opin Microbiol 13:424–430CrossRefPubMedGoogle Scholar
  37. Lu JM, Deschenes RJ, Fassler JS (2003) Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Eukaryot Cell 2:1304–1314CrossRefPubMedPubMedCentralGoogle Scholar
  38. Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369(6477):242–245CrossRefPubMedGoogle Scholar
  39. Mavrianos J et al (2013) Mitochondrial two-component signaling systems in Candida albicans. Eukaryot Cell 12:913–922Google Scholar
  40. Mavrianos J, Desai C, Chauhan N (2014) Two-component histidine phosphotransfer protein Ypd1 is not essential for viability in Candida albicans. Eukaryot Cell 13:452–460Google Scholar
  41. Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP repeats act as an osmosensing molecular switch in a group III hybrid histidine kinase. J Biol Chem 285:12121–12132CrossRefPubMedPubMedCentralGoogle Scholar
  42. Möglich A, Ayers RA, Moffat K (2009) Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282–1294CrossRefPubMedPubMedCentralGoogle Scholar
  43. Morel G et al (2015) Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Sci Rep 5:11571CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nagahashi S et al (1998) Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144:425–432Google Scholar
  45. Navarro-Arias MJ et al (2017) Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host-pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Res MicrobiolGoogle Scholar
  46. Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262(5133):566–569CrossRefPubMedGoogle Scholar
  47. Pais P, Costa C, Cavalheiro M, Romão D, Teixeira MC (2016) Transcriptional control of drug resistance, virulence and immune system evasion in pathogenic fungi: a cross-species comparison. Front Cell Infect Microbiol 6:131CrossRefPubMedPubMedCentralGoogle Scholar
  48. Papon N et al (2006) Molecular cloning and expression of a cDNA encoding a hybrid histidine kinase receptor in tropical periwinkle Catharanthus roseus. Plant Biol (Stuttg) 8:731–736CrossRefGoogle Scholar
  49. Papon N, Courdavault V, Clastre M (2014) Biotechnological potential of the fungal CTG clade species in the synthetic biology era. Trends Biotechnol 32:167–168CrossRefPubMedGoogle Scholar
  50. Posas F et al (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875CrossRefPubMedGoogle Scholar
  51. Randhawa A, Mondal AK (2013) The sixth HAMP domain negatively regulates the activity of the group III HHK containing seven HAMP domains. Biochem Biophys Res Commun 438:140–144CrossRefPubMedGoogle Scholar
  52. Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040CrossRefPubMedPubMedCentralGoogle Scholar
  53. Riley R et al (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci USA 113:9882–9887CrossRefPubMedGoogle Scholar
  54. Rodríguez-González M et al (2017) Role of the Sln1-phosphorelay pathway in the response to hyperosmotic stress in the yeast Kluyveromyces lactis. Mol Microbiol 104:822–836Google Scholar
  55. Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, López-Villaseñor I, Coria R (2017) The yeasts phosphorelay systems: a comparative view. World J Microbiol Biotechnol 33:111CrossRefPubMedGoogle Scholar
  56. Shor E, Chauhan N (2015) A case for two-component signaling systems as antifungal drug targets. PLoS Pathog 11(2):e1004632CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C (2005) Regulation of G0 entry by the Pho80–Pho85 cyclin-CDK complex. EMBO J 24:4271–4278CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yamada-Okabe T et al (1999) Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181:7243–7247PubMedPubMedCentralGoogle Scholar
  59. Zhang N, Cao L (2017) Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity. Curr Genet. PubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Anaïs Hérivaux
    • 1
  • José L. Lavín
    • 2
  • Thomas Dugé de Bernonville
    • 3
  • Patrick Vandeputte
    • 1
    • 4
  • Jean-Philippe Bouchara
    • 1
    • 4
  • Amandine Gastebois
    • 1
  • José A. Oguiza
    • 5
  • Nicolas Papon
    • 1
  1. 1.Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, UNIV Angers, UNIV BrestUniversité Bretagne-LoireAngersFrance
  2. 2.Genome Analysis PlatformCIC bioGUNEDerioSpain
  3. 3.Biomolécules et Biotechnologies Végétales, EA2106Université François Rabelais de ToursToursFrance
  4. 4.Laboratoire de Parasitologie-MycologieCentre Hospitalier Universitaire d’AngersAngersFrance
  5. 5.Genetics and Microbiology Research Group, Department of Agrarian ProductionPublic University of NavarrePamplonaSpain

Personalised recommendations