Current Genetics

, Volume 64, Issue 3, pp 741–752 | Cite as

The 19S proteasome regulates subtelomere silencing and facultative heterochromatin formation in fission yeast

  • Hogyu David Seo
  • Chang Seob Kwon
  • Daeyoup LeeEmail author
Original Article


Accumulating evidence shows that non-proteolytic functions of the proteasome are as crucial as its well-known proteolytic function in regulating cellular activities. In our recent work, we showed that the 19S proteasome mediates the heterochromatin spreading of centromeric heterochromatin in non-proteolytic manner. However, the involvement of the proteasome in other heterochromatin regions remained largely unknown. In the present study, we investigated the non-proteolytic role of the 19S proteasome in subtelomere and facultative heterochromatin regions. Using the non-proteolytic mutant, rpt4-1, we show that the 19S proteasome is involved in regulating subtelomere silencing and facultative heterochromatin formation in fission yeast. In addition to this proteasome-related regulation, we also observed a distinct pathway that regulates subtelomere silencing and facultative heterochromatin formation through the Paf1 complex subunit, Leo1. Our comparison of the two pathways revealed a new group of heterochromatin domains that are regulated exclusively by the proteasome pathway. Taken together, our findings reveal that the proteasome is involved in the global regulation of facultative and constitutive heterochromatin.


Proteasome Non-proteolytic function 19S RP Heterochromatin Telomere Epe1 Leo1 Facultative heterochromatin Epigenetics Chromatin regulation 



We are grateful to Robin Allshire, Amikam Cohen and Elizabeth Bayne for providing strains and reagents.

Author contributions

HDS and DL conceived and designed the project; HDS performed most of the experiments and data analyses with input from DL; CSK contributed to revising the manuscript; HDS and DL drafted the manuscript; and all the authors contributed to revising the manuscript and gave final approval for its publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest with respect to the contents of this article.


This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016R1A2B2006354). This work was also supported by grants from the KAIST Future Systems Healthcare Project funded by the Ministry of Science and ICT.

Supplementary material

294_2017_792_MOESM1_ESM.pdf (568 kb)
Supplementary material 1 (PDF 568 KB)


  1. Allshire RC, Ekwall K (2015) Epigenetic regulation of chromatin states in schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7:a018770CrossRefPubMedPubMedCentralGoogle Scholar
  2. Archer CT, Burdine L, Liu B, Ferdous A, Johnston SA, Kodadek T (2008) Physical and functional interactions of monoubiquitylated transactivators with the proteasome. J Biol Chem 283:21789–21798CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ayoub N, Noma K, Isaac S, Kahan T, Grewal SI, Cohen A (2003) A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol Cell Biol 23:4356–4370CrossRefPubMedPubMedCentralGoogle Scholar
  4. Birchler JA, Bhadra MP, Bhadra U (2000) Making noise about silence: repression of repeated genes in animals. Curr Opin Genet Dev 10:211–216CrossRefPubMedGoogle Scholar
  5. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56CrossRefPubMedGoogle Scholar
  6. Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature cell biology 1:221–226CrossRefPubMedGoogle Scholar
  7. Buchanan L, Durand-Dubief M, Roguev A, Sakalar C, Wilhelm B, Stralfors A, Shevchenko A, Aasland R, Shevchenko A, Ekwall K, Stewart F, A (2009) The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains. PLoS Genet 5:e1000726CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37:809–819CrossRefPubMedGoogle Scholar
  9. Chaves S, Baskerville C, Yu V, Reed SI (2010) Cks1, Cdk1, and the 19S proteasome collaborate to regulate gene induction-dependent nucleosome eviction in yeast. Mol Cell Biol 30:5284–5294CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chikashige Y, Tsutsumi C, Okamasa K, Yamane M, Nakayama J, Niwa O, Haraguchi T, Hiraoka Y (2007) Gene expression and distribution of Swi6 in partial aneuploids of the fission yeast Schizosaccharomyces pombe. Cell Struct Funct 32:149–161CrossRefPubMedGoogle Scholar
  11. Elsasser S, Chandler-Militello D, Muller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279:26817–26822CrossRefPubMedGoogle Scholar
  12. Ezhkova E, Tansey WP (2004) Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell 13:435–442CrossRefPubMedGoogle Scholar
  13. Ferdous A, Sikder D, Gillette T, Nalley K, Kodadek T, Johnston SA (2007) The role of the proteasomal ATPases and activator monoubiquitylation in regulating Gal4 binding to promoters. Genes Dev 21:112–123CrossRefPubMedPubMedCentralGoogle Scholar
  14. Flury V, Georgescu PR, Iesmantavicius V, Shimada Y, Kuzdere T, Braun S, Buhler M (2017) The histone acetyltransferase Mst2 protects active chromatin from epigenetic silencing by acetylating the ubiquitin ligase Brl1. Mol Cell 67:294–307 e299CrossRefPubMedPubMedCentralGoogle Scholar
  15. Geng F, Tansey WP (2012) Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. Proc Natl Acad Sci US A 109:6060–6065CrossRefGoogle Scholar
  16. Geng F, Wenzel S, Tansey WP (2012) Ubiquitin and proteasomes in transcription. Annu Rev Biochem 81:177–201CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T (2004) Physical and functional association of RNA polymerase II and the proteasome. P Natl Acad Sci USA 101:5904–5909CrossRefGoogle Scholar
  18. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623CrossRefPubMedGoogle Scholar
  19. Gomez EB, Espinosa JM, Forsburg SL (2005) Schizosaccharomyces pombe mst2+ encodes a MYST family histone acetyltransferase that negatively regulates telomere silencing. Mol Cell Biol 25:8887–8903CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46CrossRefPubMedGoogle Scholar
  21. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479CrossRefPubMedGoogle Scholar
  22. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115:110–122CrossRefPubMedGoogle Scholar
  24. Inada M, Nichols RJ, Parsa JY, Homer CM, Benn RA, Hoxie RS, Madhani HD, Shuman S, Schwer B, Pleiss JA (2016) Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast. Nucleic Acids Res 44:9180–9189PubMedPubMedCentralGoogle Scholar
  25. Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30:191–296CrossRefPubMedGoogle Scholar
  26. Kanoh J, Sadaie M, Urano T, Ishikawa F (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15:1808–1819CrossRefPubMedGoogle Scholar
  27. Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590CrossRefPubMedGoogle Scholar
  28. Kitagawa T, Ishii K, Takeda K, Matsumoto T (2014) The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nat Commun 5:3597CrossRefPubMedGoogle Scholar
  29. Krogan NJ, Lam MH, Fillingham J, Keogh MC, Gebbia M, Li J, Datta N, Cagney G, Buratowski S, Emili A, Greenblatt JF (2004) Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16:1027–1034CrossRefPubMedGoogle Scholar
  30. Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416:763–767CrossRefPubMedGoogle Scholar
  31. Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, Workman JL (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123:423–436CrossRefPubMedGoogle Scholar
  32. Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, Grewal SI (2013) Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155:1061–1074CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lee J, Choi ES, Seo HD, Kang K, Gilmore JM, Florens L, Washburn MP, Choe J, Workman JL, Lee D (2017) Chromatin remodeller Fun30Fft3 induces nucleosome disassembly to facilitate RNA polymerase II elongation. Nat Commun 8:14527CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lim S, Kwak J, Kim M, Lee D (2013) Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle. Nat Commun 4:2641PubMedGoogle Scholar
  35. Liu CW, Millen L, Roman TB, Xiong H, Gilbert HF, Noiva R, DeMartino GN, Thomas PJ (2002) Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J Biol Chem 277:26815–26820CrossRefPubMedGoogle Scholar
  36. Madura K (2004) Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem Sci 29:637–640CrossRefPubMedGoogle Scholar
  37. Maganti N, Moody TD, Truax AD, Thakkar M, Spring AM, Germann MW, Greer SF (2014) Nonproteolytic roles of 19S ATPases in transcription of CIITApIV genes. PLoS One 9:e91200CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mandell JG, Bahler J, Volpe TA, Martienssen RA, Cech TR (2005) Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biol 6:R1CrossRefPubMedGoogle Scholar
  39. Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 24:800–812CrossRefPubMedPubMedCentralGoogle Scholar
  40. McCann TS, Tansey WP (2014) Functions of the proteasome on chromatin. Biomolecules 4:1026–1044CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113CrossRefPubMedGoogle Scholar
  42. Oh S, Jeong K, Kim H, Kwon CS, Lee D (2010) A lysine-rich region in Dot1p is crucial for direct interaction with H2B ubiquitylation and high level methylation of H3K79. Biochem Biophys Res Commun 399(4):512–517CrossRefPubMedGoogle Scholar
  43. Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718PubMedGoogle Scholar
  44. Reyes-Turcu FE, Zhang K, Zofall M, Chen E, Grewal SI (2011) Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18:1132–1138CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M (2016) Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep 6:27078CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sauer RT, Baker TA (2011) AAA + proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612CrossRefPubMedGoogle Scholar
  47. Seo HD, Choi Y, Kim M, Kang K, Urano T, Lee D 2017. The 19S proteasome is directly involved in the regulation of heterochromatin spreading in fission yeast. J Biol ChemGoogle Scholar
  48. Sikder D, Johnston SA, Kodadek T (2006) Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin. J Biol Chem 281:27346–27355CrossRefPubMedGoogle Scholar
  49. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Molecular cell 27:731–744CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stolz A, Hilt W, Buchberger A, Wolf DH (2011) Cdc48: a power machine in protein degradation. Trends Biochem Sci 36:515–523CrossRefPubMedGoogle Scholar
  51. Szutorisz H, Georgiou A, Tora L, Dillon N (2006) The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127:1375–1388CrossRefPubMedGoogle Scholar
  52. Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tashiro S, Handa T, Matsuda A, Ban T, Takigawa T, Miyasato K, Ishii K, Kugou K, Ohta K, Hiraoka Y, Masukata H, Kanoh J (2016) Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. Nat Commun 7:10393CrossRefPubMedPubMedCentralGoogle Scholar
  54. Trewick SC, Minc E, Antonelli R, Urano T, Allshire RC (2007) The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J 26:4670–4682CrossRefPubMedPubMedCentralGoogle Scholar
  55. Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13CrossRefPubMedGoogle Scholar
  56. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615CrossRefPubMedGoogle Scholar
  57. Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99–110CrossRefPubMedGoogle Scholar
  58. Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH (2015) Global regulation of heterochromatin spreading by Leo1. Open Biol 5:150045CrossRefPubMedPubMedCentralGoogle Scholar
  59. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068CrossRefPubMedGoogle Scholar
  60. Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185CrossRefPubMedGoogle Scholar
  61. Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605CrossRefPubMedGoogle Scholar
  62. Yamanaka S, Mehta S, Reyes-Turcu FE, Zhuang F, Fuchs RT, Rong Y, Robb GB, Grewal SI (2013) RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 493:557–560CrossRefPubMedGoogle Scholar
  63. Zhang K, Mosch K, Fischle W, Grewal SI (2008) Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15:381–388CrossRefPubMedGoogle Scholar
  64. Zofall M, Grewal SI (2006) Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol Cell 22:681–692CrossRefPubMedGoogle Scholar
  65. Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI (2012) RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335:96–100CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  2. 2.Department of Chemistry and BiologyKorea Science Academy of KAISTBusanSouth Korea

Personalised recommendations