Advertisement

Current Genetics

, Volume 64, Issue 2, pp 469–478 | Cite as

Screening for amyloid proteins in the yeast proteome

  • Tatyana A. Ryzhova
  • Julia V. Sopova
  • Sergey P. Zadorsky
  • Vera A. Siniukova
  • Aleksandra V. Sergeeva
  • Svetlana A. Galkina
  • Anton A. Nizhnikov
  • Aleksandr A. Shenfeld
  • Kirill V. Volkov
  • Alexey P. Galkin
Original Article

Abstract

The search for novel pathological and functional amyloids represents one of the most important tasks of contemporary biomedicine. Formation of pathological amyloid fibrils in the aging brain causes incurable neurodegenerative disorders such as Alzheimer’s, Parkinson’s Huntington’s diseases. At the same time, a set of amyloids regulates vital processes in archaea, prokaryotes and eukaryotes. Our knowledge of the prevalence and biological significance of amyloids is limited due to the lack of universal methods for their identification. Here, using our original method of proteomic screening PSIA–LC–MALDI, we identified a number of proteins that form amyloid-like detergent-resistant aggregates in Saccharomyces cerevisiae. We revealed in yeast strains of different origin known yeast prions, prion-associated proteins, and a set of proteins whose amyloid properties were not shown before. A substantial number of the identified proteins are cell wall components, suggesting that amyloids may play important roles in the formation of this extracellular protective sheath. Two proteins identified in our screen, Gas1 and Ygp1, involved in biogenesis of the yeast cell wall, were selected for detailed analysis of amyloid properties. We show that Gas1 and Ygp1 demonstrate amyloid properties both in vivo in yeast cells and using the bacteria-based system C-DAG. Taken together, our data show that this proteomic approach is very useful for identification of novel amyloids.

Keywords

Amyloid Prion Yeast Proteomic screen Gas1 Ygp1 

Notes

Acknowledgements

The authors acknowledge Dr. A.A. Aleksandrov for critical reading of the manuscript. Special thanks go to Dr. A. Hochschild for providing the bacterial C-DAG system. The authors acknowledge St. Petersburg State University for opportunity to use facilities of the Research Resource Center for Molecular and Cell Technologies and the Resource Centers “CHROMAS” of SPbSU. This work was partially supported by the grant of SPbSU to A.P.G. and by the Russian Foundation for Basic Research (14-04-01463to A.P.G. and 16-34-60153 to A.A.N). The experiments on proteomic screening were supported by the Russian Science Foundation 14-50-00069 to SPbSU.

Supplementary material

294_2017_759_MOESM1_ESM.xls (66 kb)
Supplementary material 1 (XLS 66 KB)
294_2017_759_MOESM2_ESM.xls (60 kb)
Supplementary material 2 (XLS 60 KB)
294_2017_759_MOESM3_ESM.xls (42 kb)
Supplementary material 3 (XLS 42 KB)
294_2017_759_MOESM4_ESM.xls (40 kb)
Supplementary material 4 (XLS 40 KB)
294_2017_759_MOESM5_ESM.pdf (143 kb)
Supplementary material 5 (PDF 143 KB)
294_2017_759_MOESM6_ESM.pdf (166 kb)
Supplementary material 6 (PDF 165 KB)

References

  1. Allen KD, Wegrzyn RD, Chernova TA, Müller S, Newnam GP, Winslett PA, Wittich KB, Wilkinson KD, Chernoff YO (2005) Hsp70 chaperones as modulators of prion life cycle. Novel effects of Ssa and Ssb on the Saccharomyces cerevisiae Prion [PSI+]. Genetics 169:1227–1242CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antonets KS, Sargsyan HM, Nizhnikov AA (2016) Glutamine/Asparagine-rich fragment of Gln3, but not the full-length protein, aggregates in Saccharomyces cerevisiae. Biochemistry (Mosc) 81:407–413. doi: 10.1134/S0006297916040118 CrossRefGoogle Scholar
  3. Bagriantsev SN, Kushnirov VV, Liebman SW (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412:33–48. doi: 10.1016/S0076-6879(06)12003-0 CrossRefPubMedGoogle Scholar
  4. Bardill JP, Dulle JE, Fisher JR, True HL (2009) Requirements of Hsp104p activity and Sis1p binding for propagation of the [RNQ(+)] prion. Prion 3:151–160CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bezsonov EE, Groenning M, Galzitskaya OV, Gorkovskii AA, Semisotnov GV, Selyakh IO, Ziganshin RH, Rekstina VV, Kudryashova IB, Kuznetsov SA, Kulaev IS, Kalebina TS (2013) Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion 7:175–184. doi: 10.4161/pri.22992 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brennan TC, Krömer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 79:3590–3600. doi: 10.1128/AEM.00463-13 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Broach JR, Strathern JN, Hicks JB (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of the can1 gene. Gene 8:121–133CrossRefPubMedGoogle Scholar
  8. Burgess RJ, Guy MP, Zhang Z (2009) Fueling transcriptional silencing with Gas1. Proc Natl Acad Sci USA 106:10879–10880. doi: 10.1073/pnas.0905192106 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. doi: 10.1126/science.1067484 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chernoff YO (2001) Mutation processes at the protein level: is Lamarck back? Mutat Res 488:39–64CrossRefPubMedGoogle Scholar
  11. Chernoff YO, Kiktev DA (2016) Dual role of ribosome-associated chaperones in prion formation and propagation. Curr Genet 62:677–685. doi: 10.1007/s00294-016-0586-2 CrossRefPubMedGoogle Scholar
  12. Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 19:8103–8112CrossRefPubMedPubMedCentralGoogle Scholar
  13. Destruelle M, Holzer H, Klionsky DJ (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol 14:2740–2754CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6. doi: 10.1371/journal.pbio.0040006 CrossRefPubMedGoogle Scholar
  15. Humenik M, Smith AM, Arndt S, Scheibel T (2015) Ion and seed dependent fibril assembly of a spidroin core domain. J Struct Biol 191:130–138. doi: 10.1016/j.jsb.2015.06.021 CrossRefPubMedGoogle Scholar
  16. Kalebina TS, Plotnikova TA, Gorkovskii AA, Selyakh IO, Galzitskaya OV et al (2008) Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences. Prion 2:91–96CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Amyloidogenic nature of spider silk. Eur J Biochem 269:4159–4163CrossRefPubMedGoogle Scholar
  18. Koch MR, Pillus L (2009) The glucanosyltransferase Gas1 functions in transcriptional silencing. Proc Natl Acad Sci USA 106:11224–11229. doi: 10.1073/pnas.0900809106 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 278:49636–49643. doi: 10.1074/jbc.M307996200 CrossRefPubMedGoogle Scholar
  20. Kryndushkin D, Pripuzova N, Burnett B, Shewmaker F (2013) Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells. J Biol Chem 288:27100–27111. doi: 10.1074/jbc.M113.485359 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kushnirov VV, Ter-Avanesyan MD (1998) Structure and replication of yeast prions. Cell 94:13–16CrossRefPubMedGoogle Scholar
  22. Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148:515–529. doi: 10.1016/j.cell.2012.01.004 CrossRefPubMedGoogle Scholar
  23. Moreno-García J, Mauricio JC, Moreno J, García-Martínez T (2017) Differential proteome analysis of a flor yeast strain under biofilm formation. Int J Mol Sci 18:720. doi: 10.3390/ijms18040720 CrossRefPubMedCentralGoogle Scholar
  24. Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 19:1325–1333. doi: 10.1038/nprot.2013.081 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nizhnikov AA, Alexandrov AI, Ryzhova TA, Mitkevich OV, Dergalev AA, Ter-Avanesyan MD, Galkin AP (2014) Proteomic screening for amyloid proteins. PLoS One 9:e116003. doi: 10.1371/journal.pone.0116003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nizhnikov AA, Ryzhova TA, Volkov KV, Zadorsky SP, Sopova JV, Inge-Vechtomov SG, Galkin AP (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae. PLoS Genet 12:e1006504. doi: 10.1371/journal.pgen.1006504 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Park SK, Hong JY, Arslan F, Kanneganti V, Patel B, Tietsort A, Tank EMH, Li X, Barmada SJ, Liebman SW (2017) Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 13:e1006805. doi: 10.1371/journal.pgen.1006805 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Plotnikova TA, Selyakh IO, Kalebina TS, Kulaev IS (2006) Bgl2p and Gas1p are the major glucan transferases forming the molecular ensemble of yeast cell wall. Dokl Biochem Biophys 409:244–247CrossRefPubMedGoogle Scholar
  29. Prusiner SB (1982) Novel proteinaceous infections particles cause scrapie. Science 216:136–144CrossRefPubMedGoogle Scholar
  30. Ragni E, Fontaine T, Gissi C, Latgè JP, Popolo L (2007) The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24:297–308. doi: 10.1002/yea.1473 CrossRefPubMedGoogle Scholar
  31. Ramanagoudr-Bhojappa R, Blair LP, Tackett AJ, Raney KD (2013) Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein. Nucleic Acids Res 41:1029–1046. doi: 10.1093/nar/gks1088 CrossRefPubMedGoogle Scholar
  32. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR (2006) Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59:870–881. doi: 10.1111/j.1365-2958.2005.04997 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Saarikangas J, Barral Y (2016) Protein aggregation as a mechanism of adaptive cellular responses. Curr Genet 62:711–724. doi: 10.1007/s00294-016-0596-0 CrossRefPubMedGoogle Scholar
  34. Sarto-Jackson I, Tomaska L (2016) How to bake a brain: yeast as a model neuron. Curr Genet 62:347–370. doi: 10.1007/s00294-015-0554-2 CrossRefPubMedGoogle Scholar
  35. Schwartz K, Boles BR (2013) Microbial amyloids-functions and interactions within the host. Curr Opin Microbiol 16:93–99. doi: 10.1016/j.mib.2012.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115:879–891CrossRefPubMedGoogle Scholar
  37. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G et al (2012) Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 19:167–170. doi: 10.3109/13506129.2012.734345 CrossRefPubMedGoogle Scholar
  38. Sivanathan V, Hochschild A (2012) Generating extracellular amyloid aggregates using E. coli cells. Genes Dev 26:2659–2667. doi: 10.1101/gad.205310.112 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sivanathan V, Hochschild A (2013) A bacterial export system for generating extracellular amyloid aggregates. Nat Protoc 8:1381–1390. doi: 10.1038/nprot.2013.081 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22:531–536. doi: 10.1093/protein/gzp037 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of “aggregation-prone” peptides in globular proteins. PLoS One 8(1):e54175CrossRefPubMedPubMedCentralGoogle Scholar
  42. Urakov VN, Vishnevskaya AB, Alexandrov IM, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (2010) Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions. Prion 4:45–52CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vandenbosch D, Canck E, Dhondt I, Rigole P, Nelis H, Coenye T (2013) Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res 13:720–730. doi: 10.1111/1567-1364.12071 CrossRefPubMedGoogle Scholar
  44. Wickner RB (1994) [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569CrossRefPubMedGoogle Scholar
  45. Yuga M, Gomi K, Klionsky DJ, Shintani T (2011) Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 286:13704–13713. doi: 10.1074/jbc.M110.173906 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tatyana A. Ryzhova
    • 1
    • 2
  • Julia V. Sopova
    • 1
    • 2
  • Sergey P. Zadorsky
    • 1
    • 2
  • Vera A. Siniukova
    • 2
  • Aleksandra V. Sergeeva
    • 1
  • Svetlana A. Galkina
    • 2
  • Anton A. Nizhnikov
    • 1
    • 2
    • 3
  • Aleksandr A. Shenfeld
    • 1
    • 2
  • Kirill V. Volkov
    • 4
  • Alexey P. Galkin
    • 1
    • 2
  1. 1.Vavilov Institute of General Genetics, St. Petersburg BranchRussian Academy of SciencesSt. PetersburgRussian Federation
  2. 2.Department of Genetics and BiotechnologySt. Petersburg State UniversitySt. PetersburgRussian Federation
  3. 3.All-Russia Research Institute for Agricultural MicrobiologySt. PetersburgRussian Federation
  4. 4.Research Park, Research Resource Center “Molecular and Cell Technologies”St. Petersburg State UniversitySt. PetersburgRussian Federation

Personalised recommendations