Synthetic genome recoding: new genetic codes for new features

  • James Kuo
  • Finn Stirling
  • Yu Heng Lau
  • Yekaterina Shulgina
  • Jeffrey C. Way
  • Pamela A. Silver


Full genome recoding, or rewriting codon meaning, through chemical synthesis of entire bacterial chromosomes has become feasible in the past several years. Recoding an organism can impart new properties including non-natural amino acid incorporation, virus resistance, and biocontainment. The estimated cost of construction that includes DNA synthesis, assembly by recombination, and troubleshooting, is now comparable to costs of early stage development of drugs or other high-tech products. Here, we discuss several recently published assembly methods and provide some thoughts on the future, including how synthetic efforts might benefit from the analysis of natural recoding processes and organisms that use alternative genetic codes.


Editing Reassignment Alternative genetic code 


  1. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395CrossRefPubMedGoogle Scholar
  2. Bloom-Ackermann Z, Navon S, Gingold H, Towers R, Pilpel Y, Dahan O (2014) A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet 10:e1004084. doi:10.1371/journal.pgen.1004084 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chionh YH, McBee M, Babu IR, Hia F, Lin W, Zhao W, Cao J, Dziergowska A, Malkiewicz A, Begley TJ, Alonso S, Dedon PC (2016) tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nat Commun 7:13302. doi:10.1038/ncomms13302 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787. doi:10.1126/science.1155761 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Coleman JR, Papamichail D, Yano M, Garcia-Suarez Mdel M, Pirofski LA (2011) Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J Infect Dis 203:1264–1273. doi:10.1093/infdis/jir010 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Csorgo B, Feher T, Timar E, Blattner FR, Posfai G (2012) Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 11:11. doi:10.1186/1475-2859-11-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cubillos FA (2016) Exploiting budding yeast natural variation for industrial processes. Curr Genet 62:745–751. doi:10.1007/s00294-016-0602-6 CrossRefPubMedGoogle Scholar
  8. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment—expanding the chemistry in biology. Chem Sci 6:50–69. doi:10.1039/c4sc01534g CrossRefPubMedGoogle Scholar
  9. Erickson B, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176–185. doi:10.1002/biot.201100069 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10(Suppl 1):S20. doi:10.1186/1475-2859-10-S1-S20 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479. doi:10.1126/science.1241934 CrossRefPubMedGoogle Scholar
  12. Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov PV (2016) Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in condylostoma magnum. Mol Biol Evol 33:2885–2889. doi:10.1093/molbev/msw166 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hutchison CA 3rd, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun L, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC (2016) Design and synthesis of a minimal bacterial genome. Science 351:aad6253. doi:10.1126/science.aad6253 CrossRefPubMedGoogle Scholar
  14. Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353. doi:10.1126/science.1205822 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ivanova NN, Schwientek P, Tripp HJ, Rinke C, Pati A, Huntemann M, Visel A, Woyke T, Kyrpides NC, Rubin EM (2014) Stop codon reassignments in the wild. Science 344:909–913. doi:10.1126/science.1250691 CrossRefPubMedGoogle Scholar
  16. Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2:21–26PubMedGoogle Scholar
  17. Kaplan S (1971) Lysine suppressor in Escherichia coli. J Bacteriol 105:984–987PubMedPubMedCentralGoogle Scholar
  18. Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58. doi:10.1038/35047500 CrossRefPubMedGoogle Scholar
  19. Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, Silver PA (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci USA 111:4838–4843. doi:10.1073/pnas.1321321111 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lajoie MJ, Kosuri S, Mosberg JA, Gregg CJ, Zhang D, Church GM (2013a) Probing the limits of genetic recoding in essential genes. Science 342:361–363. doi:10.1126/science.1241460 CrossRefPubMedGoogle Scholar
  21. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013b) Genomically recoded organisms expand biological functions. Science 342:357–360. doi:10.1126/science.1241459 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lajoie MJ, Soll D, Church GM (2016) Overcoming challenges in engineering the genetic code. J Mol Biol 428:1004–1021. doi:10.1016/j.jmb.2015.09.003 CrossRefPubMedGoogle Scholar
  23. Lau YH, Stirling F, Kuo J, Karrenbelt MAP, Chan YA, Riesselman A, Horton CA, Schafer E, Lips D, Weinstock MT, Gibson DG, Way JC, Silver PA (2017) Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res. doi:10.1093/nar/gkx415 Google Scholar
  24. Ling J, O’Donoghue P, Soll D (2015) Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 13:707–721. doi:10.1038/nrmicro3568 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ma NJ, Isaacs FJ (2016) Genomic recoding broadly obstructs the propagation of horizontally transferred genetic elements. Cell Syst 3:199–207. doi:10.1016/j.cels.2016.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Marsh EN (2014) Fluorinated proteins: from design and synthesis to structure and stability. Acc Chem Res 47:2878–2886. doi:10.1021/ar500125m CrossRefPubMedGoogle Scholar
  27. Martinez MA, Jordan-Paiz A, Franco S, Nevot M (2016) Synonymous virus genome recoding as a tool to impact viral fitness. Trends Microbiol 24:134–147. doi:10.1016/j.tim.2015.11.002 CrossRefPubMedGoogle Scholar
  28. Massey SE, Moura G, Beltrao P, Almeida R, Garey JR, Tuite MF, Santos MA (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557. doi:10.1101/gr.811003 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mattozzi MDLP, Keasling JD (2010) Rationally engineered biotransformation of p-nitrophenol. Biotechnol Prog 26:616–621. doi:10.1002/btpr.382 CrossRefGoogle Scholar
  30. McCutcheon JP, McDonald BR, Moran NA (2009) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5:e1000565. doi:10.1371/journal.pgen.1000565 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mitchell LA, Wang A, Stracquadanio G, Kuang Z, Wang X, Yang K, Richardson S, Martin JA, Zhao Y, Walker R, Luo Y, Dai H, Dong K, Tang Z, Yang Y, Cai Y, Heguy A, Ueberheide B, Fenyo D, Dai J, Bader JS, Boeke JD (2017) Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science. doi:10.1126/science.aaf4831 PubMedCentralGoogle Scholar
  32. Muhlhausen S, Kollmar M (2014) Molecular phylogeny of sequenced Saccharomycetes reveals polyphyly of the alternative yeast codon usage. Genome Biol Evol 6:3222–3237CrossRefPubMedPubMedCentralGoogle Scholar
  33. Muhlhausen S, Findeisen P, Plessmann U, Urlaub H, Kollmar M (2016) A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes. Genome Res 26:945–955. doi:10.1101/gr.200931.115 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mukai T, Lajoie MJ, Englert M, Soll D (2017) Rewriting the genetic code. Annu Rev Microbiol. doi:10.1146/annurev-micro-090816-093247 PubMedGoogle Scholar
  35. Napolitano MG, Landon M, Gregg CJ, Lajoie MJ, Govindarajan L, Mosberg JA, Kuznetsov G, Goodman DB, Vargas-Rodriguez O, Isaacs FJ, Soll D, Church GM (2016) Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli. Proc Natl Acad Sci USA 113:E5588–E5597. doi:10.1073/pnas.1605856113 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264PubMedPubMedCentralGoogle Scholar
  37. Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano MG, Moosburner M, Shrock E, Pruitt BW, Conway N, Goodman DB, Gardner CL, Tyree G, Gonzales A, Wanner BL, Norville JE, Lajoie MJ, Church GM (2016) Design, synthesis, and testing toward a 57-codon genome. Science 353:819–822. doi:10.1126/science.aaf3639 CrossRefPubMedGoogle Scholar
  38. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. doi:10.1038/nrg2899 CrossRefPubMedGoogle Scholar
  39. Prat L, Heinemann IU, Aerni HR, Rinehart J, O’Donoghue P, Soll D (2012) Carbon source-dependent expansion of the genetic code in bacteria. Proc Natl Acad Sci USA 109:21070–21075. doi:10.1073/pnas.1218613110 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Quax TE, Claassens NJ, Soll D, van der Oost J (2015) Codon bias as a means to fine-tune gene expression. Mol Cell 59:149–161. doi:10.1016/j.molcel.2015.05.035 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE, Lee D, Huang CL, Chandrasegaran S, Cai Y, Boeke JD, Bader JS (2017) Design of a synthetic yeast genome. Science 355:1040–1044. doi:10.1126/science.aaf4557 CrossRefPubMedGoogle Scholar
  42. Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, Kotula JW, Gerber GK, Way JC, Silver PA (2017) Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 35:653–658. doi:10.1038/nbt.3879 CrossRefPubMedGoogle Scholar
  43. Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Goker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk HP, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci USA 113:9882–9887. doi:10.1073/pnas.1603941113 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rogers MJ, Adachi T, Inokuchi H, Soll D (1992) Switching tRNA(Gln) identity from glutamine to tryptophan. Proc Natl Acad Sci USA 89:3463–3467CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93. doi:10.1038/nature14095 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, Larossa RA, Soll D (2008) Quality control despite mistranslation caused by an ambiguous genetic code. Proc Natl Acad Sci USA 105:16502–16507. doi:10.1073/pnas.0809179105 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Samson JE, Moineau S (2013) Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 4:347–368. doi:10.1146/annurev-food-030212-182541 CrossRefPubMedGoogle Scholar
  48. Santos MA, Cheesman C, Costa V, Moradas-Ferreira P, Tuite MF (1999) Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol Microbiol 31:937–947CrossRefPubMedGoogle Scholar
  49. Savage DF, Way J, Silver PA (2008) Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol 3:13–16. doi:10.1021/cb700259j CrossRefPubMedGoogle Scholar
  50. Sengupta S, Yang X, Higgs PG (2007) The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 64:662–688. doi:10.1007/s00239-006-0284-7 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Snoek T, Verstrepen KJ, Voordeckers K (2016) How do yeast cells become tolerant to high ethanol concentrations? Curr Genet 62:475–480. doi:10.1007/s00294-015-0561-3 CrossRefPubMedGoogle Scholar
  52. Swart EC, Serra V, Petroni G, Nowacki M (2016) Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166:691–702. doi:10.1016/j.cell.2016.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T, Dahan O, Furman I, Pilpel Y (2010a) An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141:344–354. doi:10.1016/j.cell.2010.03.031 CrossRefPubMedGoogle Scholar
  54. Tuller T, Waldman YY, Kupiec M, Ruppin E (2010b) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA 107:3645–3650. doi:10.1073/pnas.0909910107 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang L, Xie J, Schultz PG (2006) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249. doi:10.1146/annurev.biophys.35.101105.121507 CrossRefPubMedGoogle Scholar
  56. Wang K, Sachdeva A, Cox DJ, Wilf NM, Lang K, Wallace S, Mehl RA, Chin JW (2014) Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat Chem 6:393–403. doi:10.1038/nchem.1919 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wang K, Fredens J, Brunner SF, Kim SH, Chia T, Chin JW (2016) Defining synonymous codon compression schemes by genome recoding. Nature 539:59–64. doi:10.1038/nature20124 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wannier TM, Kunjapur AM, Rice DP, McDonald MJ, Desai MM, Church GM (2017) Long-term adaptive evolution of genomically recoded Escherichia coli. bioRxiv. doi:10.1101/162834 Google Scholar
  59. Xiao H, Nasertorabi F, Choi SH, Han GW, Reed SA, Stevens RC, Schultz PG (2015) Exploring the potential impact of an expanded genetic code on protein function. Proc Natl Acad Sci USA 112:6961–6966. doi:10.1073/pnas.1507741112 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Young TS, Schultz PG (2010) Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem 285:11039–11044. doi:10.1074/jbc.R109.091306 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • James Kuo
    • 1
    • 2
  • Finn Stirling
    • 1
    • 2
  • Yu Heng Lau
    • 1
    • 2
  • Yekaterina Shulgina
    • 3
  • Jeffrey C. Way
    • 1
    • 2
  • Pamela A. Silver
    • 1
    • 2
  1. 1.Department of Systems BiologyHarvard Medical SchoolBostonUSA
  2. 2.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA
  3. 3.Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations