Current Genetics

, Volume 64, Issue 1, pp 141–146 | Cite as

MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus

  • Özlem Sarikaya Bayram
  • Jean Paul Latgé
  • Özgür Bayram


Aspergillus fumigatus is an opportunistic human pathogen that causes various complications in patients with a weakened immune system functions. Asexual spores of A. fumigatus are responsible for initiation of aspergillosis. Long-term viability and proper germination of dormant conidia depend on trehalose accumulation, which protect the spores against thermal and oxidative stress. A putative Myb transcription factor, MybA has been recently found to be responsible for a variety of physiological and molecular roles ranging from conidiation, spore viability, trehalose accumulation, cell wall integrity and protection against reactive oxygen species. In this perspective review, we discuss the recent findings of MybA and its overlapping functions with the other regulators of conidia viability and trehalose accumulation. Therefore, the aim of this perspective is to raise interesting and stimulating questions on the molecular functions of MybA in conidiation and trehalose biogenesis and to question its genetic and physical interactions with the other regulators of conidial viability.


MybA Spore viability VelB-VosA Cell wall Aspergillus fumigatus AtfA WetA 



This publication has emanated from research supported by a research Grant from Science Foundation Ireland (SFI) under Grant Number 13/CDA/2142 to Ozgur Bayram. Ozlem Sarikaya Bayram is supported by the Irish Research Council (IRC) Postdoctoral Fellowship (GOIPD/2014/178).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmed YL, Gerke J, Park HS, Bayram O, Neumann P, Ni M, Dickmanns A, Kim SC, Yu JH, Braus GH, Ficner R (2013) The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kappaB. PLoS Biol 11:e1001750. doi: 10.1371/journal.pbio.1001750 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CM, Campoli P, Chabot J, Filler SG, Sheppard DC (2010) Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 78:3007–3018. doi: 10.1128/IAI.00813-09 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alkhayyat F, Chang Kim S, Yu JH (2015) Genetic control of asexual development in Aspergillus fumigatus. Adv Appl Microbiol 90:93–107. doi: 10.1016/bs.aambs.2014.09.004 CrossRefPubMedGoogle Scholar
  4. Amin S, Thywissen A, Heinekamp T, Saluz HP, Brakhage AA (2014) Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int J Med Microbiol 304:626–636. doi: 10.1016/j.ijmm.2014.04.009 CrossRefPubMedGoogle Scholar
  5. Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24. doi: 10.1111/j.1574-6976.2011.00285.x CrossRefPubMedGoogle Scholar
  6. Bayram O, Krappmann S, Ni M, Bok J, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N, Keller N, Yu J, Braus G (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506. doi: 10.1126/science.1155888 CrossRefPubMedGoogle Scholar
  7. Bruder Nascimento AC, Dos Reis TF, de Castro PA, Hori JI, Bom VL, de Assis LJ, Ramalho LN, Rocha MC, Malavazi I, Brown NA, Valiante V, Brakhage AA, Hagiwara D, Goldman GH (2016) Mitogen activated protein kinases SakA(HOG1) and MpkC collaborate for Aspergillus fumigatus virulence. Mol Microbiol 100:841–859. doi: 10.1111/mmi.13354 CrossRefPubMedGoogle Scholar
  8. Bultman KM, Kowalski CH, Cramer RA (2017) Aspergillus fumigatus virulence through the lens of transcription factors. Med Mycol 55:24–38. doi: 10.1093/mmy/myw120 CrossRefPubMedGoogle Scholar
  9. Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061. doi: 10.1016/j.fgb.2008.03.014 CrossRefPubMedGoogle Scholar
  10. Chung D, Barker BM, Carey CC, Merriman B, Werner ER, Lechner BE, Dhingra S, Cheng C, Xu W, Blosser SJ, Morohashi K, Mazurie A, Mitchell TK, Haas H, Mitchell AP, Cramer RA (2014) ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog 10:e1004487. doi: 10.1371/journal.ppat.1004487 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cramer RA (2016) In vivo veritas: Aspergillus fumigatus proliferation and pathogenesis–conditionally speaking. Virulence 7:7–10. doi: 10.1080/21505594.2015.1134074 CrossRefPubMedGoogle Scholar
  12. Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 22:447–465. doi: 10.1128/CMR.00055-08 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhaes R (2015) Revisiting yeast trehalose metabolism. Curr Genet 61:263–274. doi: 10.1007/s00294-014-0450-1 CrossRefPubMedGoogle Scholar
  14. Etxebeste O, Garzia A, Espeso EA, Ugalde U (2010) Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 18:569–576. doi: 10.1016/j.tim.2010.09.007 CrossRefPubMedGoogle Scholar
  15. Hagiwara D, Asano Y, Yamashino T, Mizuno T (2008) Characterization of bZip-type transcription factor AtfA with reference to stress responses of conidia of Aspergillus nidulans. Biosci Biotechnol Biochem 72:2756–2760. doi: 10.1271/bbb.80001 CrossRefPubMedGoogle Scholar
  16. Hagiwara D, Suzuki S, Kamei K, Gonoi T, Kawamoto S (2014) The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genet Biol 73:138–149. doi: 10.1016/j.fgb.2014.10.011 CrossRefPubMedGoogle Scholar
  17. Heinekamp T, Schmidt H, Lapp K, Pahtz V, Shopova I, Koster-Eiserfunke N, Kruger T, Kniemeyer O, Brakhage AA (2015) Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol 37:141–152. doi: 10.1007/s00281-014-0465-1 CrossRefPubMedGoogle Scholar
  18. Ho YH, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511. doi: 10.1007/s00294-015-0491-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jaimes-Arroyo R, Lara-Rojas F, Bayram O, Valerius O, Braus GH, Aguirre J (2015) The SrkA kinase is part of the SakA mitogen-activated protein kinase interactome and regulates stress responses and development in Aspergillus nidulans. Eukaryot Cell 14:495–510. doi: 10.1128/EC.00277-14 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim H, Han K, Kim K, Han D, Jahng K, Chae K (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80CrossRefPubMedGoogle Scholar
  21. Lara-Rojas F, Sanchez O, Kawasaki L, Aguirre J (2011) Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80:436–454. doi: 10.1111/j.1365-2958.2011.07581.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. Latge JP (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9:382–389CrossRefPubMedGoogle Scholar
  23. Mah JH, Yu JH (2006) Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot Cell 5:1585–1595. doi: 10.1128/EC.00192-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ni M, Yu JH (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2:e970. doi: 10.1371/journal.pone.0000970 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latge JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Cordoba S, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. doi: 10.1038/nature04332 CrossRefPubMedGoogle Scholar
  26. Oiartzabal-Arano E, Perez-de-Nanclares-Arregi E, Espeso EA, Etxebeste O (2016) Apical control of conidiation in Aspergillus nidulans. Curr Genet 62:371–377. doi: 10.1007/s00294-015-0556-0 CrossRefPubMedGoogle Scholar
  27. Park HS, Yu JH (2016) Developmental regulators in Aspergillus fumigatus. J Microbiol 54:223–231. doi: 10.1007/s12275-016-5619-5 CrossRefPubMedGoogle Scholar
  28. Park HS, Bayram O, Braus GH, Kim SC, Yu JH (2012) Characterization of the velvet regulators in Aspergillus fumigatus. Mol Microbiol 86:937–953. doi: 10.1111/mmi.12032 CrossRefPubMedGoogle Scholar
  29. Rohrig J, Kastner C, Fischer R (2013) Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr Genet 59:55–62. doi: 10.1007/s00294-013-0387-9 CrossRefPubMedGoogle Scholar
  30. Sarikaya Bayram O, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6:e1001226. doi: 10.1371/journal.pgen.1001226 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sarikaya-Bayram O, Palmer JM, Keller N, Braus GH, Bayram O (2015) One Juliet and four Romeos: VeA and its methyltransferases. Front Microbiol 6:1. doi: 10.3389/fmicb.2015.00001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latge JP, Steinbach WJ (2014) Aspergillus fumigatus and related species. Cold Spring Harbor Perspect Med 5:a019786. doi: 10.1101/cshperspect.a019786 CrossRefGoogle Scholar
  33. Tao L, Yu JH (2011) AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology 157:313–326. doi: 10.1099/mic.0.044271-0 CrossRefPubMedGoogle Scholar
  34. Thammahong A, Puttikamonkul S, Perfect JR, Brennan RG, Cramer RA (2017) Central role of the trehalose biosynthesis pathway in the pathogenesis of human fungal infections: opportunities and challenges for therapeutic development. Microbiol Mol Biol Rev. doi: 10.1128/MMBR.00053-16 PubMedGoogle Scholar
  35. Valsecchi I, Sarikaya-Bayram O, Wong Sak Hoi J, Muszkieta L, Gibbons J, Prevost MC, Mallet A, Krijnse-Locker J, Ibrahim-Granet O, Mouyna I, Carr P, Bromley M, Aimanianda V, Yu JH, Rokas A, Braus GH, Saveanu C, Bayram O, Latge JP (2017) MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen Aspergillus fumigatus. Mol Microbiol. doi: 10.1111/mmi.13744 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Biology DepartmentMaynooth UniversityMaynooth, Co. KildareIreland
  2. 2.Unité des AspergillusInstitut PasteurParisFrance

Personalised recommendations