Advertisement

Current Genetics

, Volume 64, Issue 1, pp 81–86 | Cite as

The evolution of a G1/S transcriptional network in yeasts

  • Adi Hendler
  • Edgar M. Medina
  • Nicolas E. Buchler
  • Robertus A. M. de Bruin
  • Amir Aharoni
Review

Abstract

The G1-to-S cell cycle transition is promoted by the periodic expression of a large set of genes. In Saccharomyces cerevisiae G1/S gene expression is regulated by two transcription factor (TF) complexes, the MBF and SBF, which bind to specific DNA sequences, the MCB and SCB, respectively. Despite extensive research little is known regarding the evolution of the G1/S transcription regulation including the co-evolution of the DNA binding domains with their respective DNA binding sequences. We have recently examined the co-evolution of the G1/S TF specificity through the systematic generation and examination of chimeric Mbp1/Swi4 TFs containing different orthologue DNA binding domains in S. cerevisiae (Hendler et al. in PLoS Genet 13:e1006778. doi: 10.1371/journal.pgen.1006778, 2017). Here, we review the co-evolution of G1/S transcriptional network and discuss the evolutionary dynamics and specificity of the MBF–MCB and SBF–SCB interactions in different fungal species.

Keywords

Cell cycle Evolution Gene expression G1-to-S transition MBF and SBF 

References

  1. Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993–1007CrossRefPubMedGoogle Scholar
  2. Bahler J (2005) Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet 39:69–94. doi: 10.1146/annurev.genet.39.110304.095808 CrossRefPubMedGoogle Scholar
  3. Bar-Joseph Z, Siegfried Z, Brandeis M, Brors B, Lu Y, Eils R, Dynlacht BD, Simon I (2008) Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc Natl Acad Sci USA 105:955–960. doi: 10.1073/pnas.0704723105 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bean JM, Siggia ED, Cross FR (2005) High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics 171:49–61CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benanti JA (2016) Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity. Curr Genet 62:271–276. doi: 10.1007/s00294-015-0535-5 CrossRefPubMedGoogle Scholar
  6. Bertoli C, Skotheim JM, de Bruin RA (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528. doi: 10.1038/nrm3629 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117:899–913. doi: 10.1016/j.cell.2004.05.024 CrossRefPubMedGoogle Scholar
  8. Côte P, Hogues H, Whiteway M (2009) Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell 20:3363–3373CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13:52–70. doi: 10.1091/mbc.01-05-0265 CrossRefPubMedPubMedCentralGoogle Scholar
  10. de Bruin RA, McDonald WH, Kalashnikova TI, Yates J 3rd, Wittenberg C (2004) Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117:887–898. doi: 10.1016/j.cell.2004.05.025 CrossRefPubMedGoogle Scholar
  11. de Bruin RA, Kalashnikova TI, Chahwan C, McDonald WH, Wohlschlegel J, Yates J 3rd, Russell P, Wittenberg C (2006) Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell 23:483–496. doi: 10.1016/j.molcel.2006.06.025 CrossRefPubMedGoogle Scholar
  12. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343. doi: 10.1093/nar/gkt135 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferrezuelo F, Colomina N, Futcher B, Aldea M (2010) The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biol 11:R67. doi: 10.1186/gb-2010-11-6-r67 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Granovskaia MV, Jensen LJ, Ritchie ME, Toedling J, Ning Y, Bork P, Huber W, Steinmetz LM (2010) High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biol 11:R24. doi: 10.1186/gb-2010-11-3-r24 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hendler A, Medina EM, Kishkevich A, Abu-Qarn M, Klier S, Buchler NE, de Bruin RAM, Aharoni A (2017) Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genet 13:e1006778. doi: 10.1371/journal.pgen.1006778 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hussein B, Huang H, Glory A, Osmani A, Kaminskyj S, Nantel A, Bachewich C (2011) G1/S transcription factor orthologues Swi4p and Swi6p are important but not essential for cell proliferation and influence hyphal development in the fungal pathogen Candida albicans. Eukaryot Cell 10:384–397. doi: 10.1128/EC.00278-10 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu J, Huang J, Zhao Y, Liu H, Wang D, Yang J, Zhao W, Taylor IA, Peng YL (2015) Structural basis of DNA recognition by PCG2 reveals a novel DNA binding mode for winged helix-turn-helix domains. Nucleic Acids Res 43:1231–1240. doi: 10.1093/nar/gku1351 CrossRefPubMedGoogle Scholar
  18. Medina EM, Turner JJ, Gordan R, Skotheim JM, Buchler NE (2016) Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. eLife. doi: 10.7554/eLife.09492 Google Scholar
  19. Ofir A, Hofmann K, Weindling E, Gildor T, Barker KS, Rogers PD, Kornitzer D (2012) Role of a Candida albicans Nrm1/Whi5 homologue in cell cycle gene expression and DNA replication stress response. Mol Microbiol 84:778–794. doi: 10.1111/j.1365-2958.2012.08056.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P, Bahler J (2004) Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36:809–817. doi: 10.1038/ng1377 CrossRefPubMedGoogle Scholar
  21. Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JH (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife. doi: 10.7554/eLife.03703 Google Scholar
  22. Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H (2017) Automated multiplex genome-scale engineering in yeast. Nat Commun 8:15187. doi: 10.1038/ncomms15187 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297CrossRefPubMedPubMedCentralGoogle Scholar
  24. Taylor IA, McIntosh PB, Pala P, Treiber MK, Howell S, Lane AN, Smerdon SJ (2000) Characterization of the DNA-binding domains from the yeast cell-cycle transcription factors Mbp1 and Swi4. Biochemistry 39:3943–3954CrossRefPubMedGoogle Scholar
  25. Voordeckers K, Pougach K, Verstrepen KJ (2015) How do regulatory networks evolve and expand throughout evolution? Curr Opin Biotechnol 34:180–188. doi: 10.1016/j.copbio.2015.02.001 CrossRefPubMedGoogle Scholar
  26. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000. doi: 10.1091/mbc.02-02-0030 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wittenberg C, Reed SI (2005) Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24:2746–2755. doi: 10.1038/sj.onc.1208606 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Life Sciences and the National Institute for Biotechnology in the NegevBen-Gurion University of the NegevBeershebaIsrael
  2. 2.Department of BiologyDuke UniversityDurhamUSA
  3. 3.Center for Genomic and Computational BiologyDuke UniversityDurhamUSA
  4. 4.MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK

Personalised recommendations