Current Genetics

, Volume 63, Issue 5, pp 819–829 | Cite as

The metagenomics worldwide research

  • Jose Antonio Garrido-CardenasEmail author
  • Francisco Manzano-Agugliaro


Metagenomics is the technique, or set of techniques, whose main objective is to determine the microbial population that can be found in a determined environment, studied in the context of its community. For this, it uses the techniques of massive sequencing, or next generation sequencing, due to the difficulties presented by traditional techniques when trying to transfer all the microorganisms present in a given environment to the laboratory. Metagenomics is a newly created technique, which was born at the beginning of the twenty-first century, and since then the interest of the world scientific community in fields as diverse as medicine, biotechnology, agriculture or genetics has not left to grow. In this article, the authors make a historical review of the metagenomics, analyze and evaluate the different massive sequencing platforms used for metagenomic assays, review the current literature on this subject and advance future problems with which researchers who decide to go deeper in this field could find. In this way, the prior knowledge of the researcher will facilitate the approach of his research.


Metagenomics Massive sequencing 16S rRNA Phylogeny Functional genomic 


  1. Ames SK, Hysom DA, Gardner SN et al (2013) Scalable metagenomic taxonomy classification using a reference genome database. Bioinformatics 29:2253–2260. doi: 10.1093/bioinformatics/btt389 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. doi: 10.1038/nature07517 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153. doi: 10.1038/nbt.1495 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cañas-Guerrero I, Mazarrón FR, Pou-Merina A et al (2013) Bibliometric analysis of research activity in the “Agronomy” category from the Web of Science, 1997–2011. Eur J Agron 50:19–28. doi: 10.1016/j.eja.2013.05.002 CrossRefGoogle Scholar
  5. Choi J, Yi S, Lee KC (2011) Analysis of keyword networks in MIS research and implications for predicting knowledge evolution. Inf Manag 48:371–381. doi: 10.1016/ CrossRefGoogle Scholar
  6. Chowdhury A, Mannan SBIN, Mazumdar RM (2012) Pyrosequencing–principles and applications. Int J Life Sci Pharma Res 2:65–76Google Scholar
  7. Eisenstein M (2012) Oxford Nanopore announcement sets sequencing sector abuzz. Nat Biotechnol 30:295–296. doi: 10.1038/nbt0412-295 CrossRefPubMedGoogle Scholar
  8. Fantini E, Gianese G, Giuliano G, Fiore A (2015) Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing. Methods Mol Biol 1231:77–90. doi: 10.1007/978-1-4939-1720-4_5 CrossRefPubMedGoogle Scholar
  9. Garrido-Cardenas JA, Garcia-Maroto F, Alvarez-Bermejo JA, Manzano-Agugliaro F (2017) DNA sequencing sensors: an overview. Sensors (Basel) 17(3):1–15. doi: 10.3390/s17030588 Google Scholar
  10. Gosalbes MJ, Durbán A, Pignatelli M et al (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One. doi: 10.1371/journal.pone.0017447 PubMedPubMedCentralGoogle Scholar
  11. Grigoriev IV, Nordberg H, Shabalov I et al (2011) P@JGI-DOE@The Genome Portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:1–7. doi: 10.1093/nar/gkr947 Google Scholar
  12. Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249. doi: 10.1016/S1074-5521(98)90108-9 CrossRefPubMedGoogle Scholar
  13. Hiraoka S, Yang C, Iwasaki W (2016) Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microbes Environ 31:204–212. doi: 10.1264/jsme2.ME16024 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hyman ED (1988) A new method of sequencing DNA. Anal Biochem 174:423–436. doi: 10.1016/0003-2697(88)90041-3 CrossRefPubMedGoogle Scholar
  15. Jerison ER, Desai MM (2015) Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments. Curr Opin Genet Dev 35:33–39. doi: 10.1016/j.gde.2015.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Laabei M, Massey R (2016) Using functional genomics to decipher the complexity of microbial pathogenicity. Curr Genet 62:523–525. doi: 10.1007/s00294-016-0576-4 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lee H, Gurtowski J, Yoo S et al (2016a) Third-generation sequencing and the future of genomics. bioRxiv 48603. doi: 10.1101/048603
  18. Lee HH, Park J, Kim J et al (2016b) Understanding the direction of evolution in Burkholderia glumae through comparative genomics. Curr Genet 62:115–123. doi: 10.1007/s00294-015-0523-9 CrossRefPubMedGoogle Scholar
  19. Leggett RM, Heavens D, Caccamo M et al (2015) NanoOK: multi-reference alignment analysis of nanopore sequencing data, quality and error profiles. Bioinformatics 32:142–144. doi: 10.1093/bioinformatics/btv540 PubMedPubMedCentralGoogle Scholar
  20. Levene MJ, Korlach J, Turner SW et al (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686. doi: 10.1126/science.1079700 CrossRefPubMedGoogle Scholar
  21. Li RW (2011) Metagenomics and its applications in agriculture, biomedicine, and environmental studies. Nova Science Publisher’sGoogle Scholar
  22. Lundin S, Stranneheim H, Pettersson E et al (2010) Increased throughput by parallelization of library preparation for massive sequencing. PLoS ONE. doi: 10.1371/journal.pone.0010029 Google Scholar
  23. Mande SS, Mohammed MH, Ghosh TS (2012) Classification of metagenomic sequences: methods and challenges. Brief Bioinform 13:669–681. doi: 10.1093/bib/bbs054 CrossRefPubMedGoogle Scholar
  24. Merriman B, Torrent I, Rothberg JM (2012) Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 33:3397–3417CrossRefPubMedGoogle Scholar
  25. Miller RR, Montoya V, Gardy JL et al (2013) Metagenomics for pathogen detection in public health. Genome Med 5:81. doi: 10.1186/gm485 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Milosavljevic A (2011) Emerging patterns of epigenomic variation. Trends Genet 27:242–250CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mitra S, Förster-Fromme K, Damms-Machado A et al (2013) Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing. BMC Genomics 14(Suppl 5):S16. doi: 10.1186/1471-2164-14-S5-S16 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Montoya FG, Baños R, Meroño JE, Manzano-Agugliaro F (2016) The research of water use in Spain. J Clean Prod 112:4719–4732. doi: 10.1016/j.jclepro.2015.06.042 CrossRefGoogle Scholar
  29. Morgan XC, Segata N, Huttenhower C (2013) Biodiversity and functional genomics in the human microbiome. Trends Genet 29:51–58CrossRefPubMedGoogle Scholar
  30. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576. doi: 10.1128/MMBR.00033-09 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pace N, Stahl D, Lane D, Olsen G (1985) Analyzing natural microbial populations by rRNA sequences. ASM Am Soc Microbiol News 51:4–12Google Scholar
  32. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalog established by metagenomic sequencing. Nature 464:59–65. doi: 10.1038/nature08821.A CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. doi: 10.1146/annurev.micro.57.030502.090759 CrossRefPubMedGoogle Scholar
  34. Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547. doi: 10.1128/AEM.66.6.2541-2547.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352. doi: 10.1038/nature10242 CrossRefPubMedGoogle Scholar
  36. Rumble SM, Lacroute P, Dalca AV et al (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol. doi: 10.1371/journal.pcbi.1000386 PubMedPubMedCentralGoogle Scholar
  37. Sanger F, Air GM, Barrell BG et al (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695CrossRefPubMedGoogle Scholar
  38. Scholz MB, Lo CC, Chain PSG (2012) Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 23:9–15CrossRefPubMedGoogle Scholar
  39. Sharon I, Morowitz MJ, Thomas BC et al (2013) Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res 23:111–120. doi: 10.1101/gr.142315.112 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Singh V, Perdigones A, García JL et al (2014) Analysis of worldwide research in the field of cybernetics during 1997–2011. Biol Cybern 108:757–776. doi: 10.1007/s00422-014-0617-3 CrossRefPubMedGoogle Scholar
  41. Tun HM, Brar MS, Khin N et al (2012) Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. J Microbiol Methods 88:369–376. doi: 10.1016/j.mimet.2012.01.001 CrossRefPubMedGoogle Scholar
  42. Valouev A, Ichikawa J, Tonthat T et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063. doi: 10.1101/gr.076463.108 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang WL, Xu SY, Ren ZG et al (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814CrossRefPubMedPubMedCentralGoogle Scholar
  44. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583. doi: 10.1073/pnas.95.12.6578 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579. doi: 10.1073/pnas.87.12.4576 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wu J, Gao W, Johnson RH et al (2013) Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of north Pacific ocean. Mar Drugs 11:3777–3801. doi: 10.3390/md11103777 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biology and GeologyUniversity of AlmeriaAlmeriaSpain
  2. 2.Department of EngineeringUniversity of AlmeriaAlmeriaSpain

Personalised recommendations