Current Genetics

, Volume 63, Issue 5, pp 877–894 | Cite as

Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives

Original Article


Lignin, most complex and abundant biopolymer on the earth’s surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.


Phanerochaete chrysosporium Transcriptome Lignocellulose Gene expression omnibus (GEO) GEO2R Detoxification responses Phase I and phase II metabolic enzymes 

Supplementary material

294_2017_686_MOESM1_ESM.docx (7.7 mb)
Supplementary material 1 (DOCX 7921 KB)
294_2017_686_MOESM2_ESM.xlsx (549 kb)
Supplementary material 2 (XLSX 549 KB)


  1. Alic M, Mayfield MB, Akileswaran L, Gold MH (1991) Homologous transformation of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Curr Genet 19:491–494CrossRefGoogle Scholar
  2. Anzenbacher P, Anzenbacherova E (2001) Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci CMLS 58:737–747CrossRefPubMedGoogle Scholar
  3. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:1CrossRefGoogle Scholar
  4. Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588CrossRefPubMedGoogle Scholar
  5. Botstein D et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896CrossRefPubMedGoogle Scholar
  7. Bunik VI (2003) 2-Oxo acid dehydrogenase complexes in redox regulation. Eur J Biochem 270:1036–1042CrossRefPubMedGoogle Scholar
  8. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefPubMedGoogle Scholar
  9. Chen C-L, Chang H-M, Kirk TK (1982) Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Holzforschung Int J Biol Chem Phys Technol Wood 36:3–9Google Scholar
  10. Chen C-L, Chang H-M, Kirk TK (1983) Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J Wood Chem Technol 3:35–57CrossRefGoogle Scholar
  11. Chigu NL, Hirosue S, Nakamura C, Teramoto H, Ichinose H, Wariishi H (2010) Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 87:1907–1916CrossRefPubMedGoogle Scholar
  12. Consortium GO (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056CrossRefGoogle Scholar
  13. Dagley S, Evans WC, Ribbons DW (1960) New pathways in the oxidative metabolism of aromatic compounds by micro-organisms. Nature 188(4750):560–566Google Scholar
  14. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454CrossRefPubMedGoogle Scholar
  15. Del Río JC, Marques G, Rencoret J, Martínez ÁT, Gutiérrez A (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55:5461–5468CrossRefPubMedGoogle Scholar
  16. Doddapaneni H, Yadav J (2005) Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Gen Genom 274:454–466CrossRefGoogle Scholar
  17. Enoki A, Gold MH (1982) Degradation of the diarylpropane lignin model compound 1-(3′,4′-diethoxyphenyl)-1,3-dihydroxy-2-(4″-methoxyphenyl)-propane derivatives by the basidiomycete Phanerochaete chrysosporium. Arch Microbiol 132:123–130CrossRefGoogle Scholar
  18. Enoki A, Goldsby GP, Gold MH (1980) Metabolism of the lignin model compounds veratrylglycerol-β-guaiacyl ether and 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether by Phanerochaete chrysosporium. Arch Microbiol 125:227–231CrossRefGoogle Scholar
  19. Feraydoni V, Hosseinihashemi SK (2012) Effect of walnut heartwood extractives, acid copper chromate, and boric acid on white-rot decay resistance of treated beech sapwood. BioResources 7:2393–2402CrossRefGoogle Scholar
  20. Filannino P, Gobbetti M, De Angelis M, Di Cagno R (2014) Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria. Appl Environ Microbiol 80:7574–7582CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816CrossRefPubMedGoogle Scholar
  22. Gaskell J et al (2014) Influence of Populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium. Appl Environ Microbiol 80:5828–5835CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243CrossRefPubMedGoogle Scholar
  24. Grigoriev IV et al (2011) Fueling the future with fungal genomics. Mycology 2:192–209Google Scholar
  25. Grigoriev IV et al (2013) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. doi: 10.1093/nar/gkt1183
  26. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo [p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952PubMedGoogle Scholar
  27. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504CrossRefPubMedGoogle Scholar
  28. Hyun MW, Yun YH, Kim JY, Kim SH (2011) Fungal and plant phenylalanine ammonia-lyase. Mycobiology 39:257–265CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap 154:103–116CrossRefGoogle Scholar
  30. Jensen KA, Evans KM, Kirk TK, Hammel KE (1994) Biosynthetic pathway for veratryl alcohol in the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:709–714PubMedPubMedCentralGoogle Scholar
  31. Jiang M, Li X, Zhang L, Feng H, Zhang Y (2009) Gene expression analysis of Phanerochaete chrysosporium during the transition time from primary growth to secondary metabolism. J Microbiol 47:308–318CrossRefPubMedGoogle Scholar
  32. Kameshwar AKS, Qin W (2016) Lignin degrading fungal enzymes. In: Production of biofuels and chemicals from lignin. Springer, Berlin, pp 81–130CrossRefGoogle Scholar
  33. Kameshwar AKS, Qin W (2017) Metadata Analysis of Phanerochaete chrysosporium gene expression data identified common CAZymes encoding gene expression profiles involved in cellulose and hemicellulose degradation. Int J Biol Sci 13:85–99CrossRefPubMedPubMedCentralGoogle Scholar
  34. Keyser P, Kirk T, Zeikus J (1978) Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797PubMedPubMedCentralGoogle Scholar
  35. Kirk TK, Farrell RL (1987) Enzymatic” combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–501CrossRefPubMedGoogle Scholar
  36. Ko JK, Um Y, Park Y-C, Seo J-H, Kim KH (2015) Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biotechnol 99:4201–4212CrossRefPubMedGoogle Scholar
  37. Korripally P, Hunt CG, Houtman CJ, Jones DC, Kitin PJ, Cullen D, Hammel KE (2015) Regulation of gene expression during the onset of ligninolytic oxidation by Phanerochaete chrysosporium on spruce wood. Appl Environ Microbiol 81:7802–7812CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600PubMedPubMedCentralGoogle Scholar
  39. Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:735CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedGoogle Scholar
  41. Martinez D et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700CrossRefPubMedGoogle Scholar
  42. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res:gks042Google Scholar
  43. Minami M, Kureha O, Mori M, Kamitsuji H, Suzuki K, Irie T (2007) Long serial analysis of gene expression for transcriptome profiling during the initiation of ligninolytic enzymes production in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 75:609–618CrossRefPubMedGoogle Scholar
  44. Minami M et al (2009) Changes in the gene expression of the white rot fungus Phanerochaete chrysosporium due to the addition of atropine. Biosci Biotechnol Biochem 73:1722–1731CrossRefPubMedGoogle Scholar
  45. Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333CrossRefPubMedGoogle Scholar
  46. Nakatsubo F, Kirk TK, Shimada M, Higuchi T (1981) Metabolism of a phenylcoumaran substructure lignin model compound in ligninolytic cultures of Phanerochaete chrysosporium. Arch Microbiol 128:416–420CrossRefGoogle Scholar
  47. Nascimento M, Santana A, Maranhão C, Oliveira L, Bieber L (2013) Phenolic extractives and natural resistance of wood. Intech 13:349–370Google Scholar
  48. Oesch F (1973) Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3:305–340CrossRefPubMedGoogle Scholar
  49. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn DiagramsGoogle Scholar
  50. Pawar PM-A, Koutaniemi S, Tenkanen M, Mellerowicz EJ (2013) Acetylation of woody lignocellulose: significance and regulation. Front Plant Sci 4:118CrossRefPubMedPubMedCentralGoogle Scholar
  51. Randall TA, Reddy CA (1992) The nature of extra-chromosomal maintenance of transforming plasmids in the filamentous basidiomycete Phanerochaete chrysosporium. Curr Genet 21:255–260CrossRefPubMedGoogle Scholar
  52. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413CrossRefPubMedGoogle Scholar
  53. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res:gkv007Google Scholar
  54. Robinson MD, Smyth GK (2008) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9:321–332Google Scholar
  55. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140Google Scholar
  56. Sakamoto T et al. (2010) Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium. Curr Genet 56:401–410CrossRefPubMedGoogle Scholar
  57. Saldanha AJ (2004) Java treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248CrossRefPubMedGoogle Scholar
  58. Shalaby S, Horwitz BA (2015) Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Curr Genet 61:347–357CrossRefPubMedGoogle Scholar
  59. Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81:399–417CrossRefPubMedGoogle Scholar
  60. Skyba O, Cullen D, Douglas CJ, Mansfield SD (2016) Gene expression patterns of wood decay fungi Postia placenta and Phanerochaete chrysosporium are influenced by wood substrate composition during degradation. Appl Environ Microbiol 82(14):4387–4400Google Scholar
  61. Špániková S, Biely P (2006) Glucuronoyl esterase–novel carbohydrate esterase produced by Schizophyllum commune. FEBS Lett 580:4597–4601CrossRefPubMedGoogle Scholar
  62. Subramanian V, Yadav JS (2008) Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol 43:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  63. Subramanian V, Yadav JS (2009) Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 75:5570–5580CrossRefPubMedPubMedCentralGoogle Scholar
  64. Suetomi T et al. (2015) Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus. Curr Genet 61:127–140CrossRefPubMedGoogle Scholar
  65. Sutherland JB, Crawford DL, Pometto III AL (1983) Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Can J Microbiol 29:1253–1257CrossRefPubMedGoogle Scholar
  66. Tatusov RL et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41CrossRefGoogle Scholar
  67. Thuillier A et al (2014) Transcriptomic responses of Phanerochaete chrysosporium to oak acetonic extracts: focus on a new glutathione transferase. Appl Environ Microbiol 80:6316–6327CrossRefPubMedPubMedCentralGoogle Scholar
  68. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26CrossRefGoogle Scholar
  69. Tonon F, de Castro CP, Odier E (1990) Nitrogen and carbon regulation of lignin peroxidase and enzymes of nitrogen metabolism in Phanerochaete chrysosporium. Exp Mycol 14:243–254CrossRefGoogle Scholar
  70. Tramontina R et al. (2017) The coptotermes gestroi aldo–keto reductase: a multipurpose enzyme for biorefinery applications. Biotechnol Biofuels 10:4CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267CrossRefPubMedGoogle Scholar
  72. Valli K, Gold MH (1991) Degradation of 2, 4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J bacteriol 173:345–352CrossRefPubMedPubMedCentralGoogle Scholar
  73. Valli K, Brock BJ, Joshi DK, Gold M (1992) Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:221–228PubMedPubMedCentralGoogle Scholar
  74. Wymelenberg AV et al (2006) Computational analysis of the Phanerochaete chrysosporium v2. 0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356CrossRefGoogle Scholar
  75. Wymelenberg AV, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D (2009) Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol 75:4058–4068CrossRefGoogle Scholar
  76. Wymelenberg AV et al (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610CrossRefGoogle Scholar
  77. Wymelenberg AV et al (2011) Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Appl Environ Microbiol 77:4499–4507CrossRefGoogle Scholar
  78. Zhou X, Lindsay H, Robinson MD (2014) Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res 42:e91Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiologyLakehead UniversityThunder BayCanada

Personalised recommendations