Current Genetics

, Volume 63, Issue 3, pp 435–439 | Cite as

Epigenetic transcriptional memory

  • Agustina D’Urso
  • Jason H. BricknerEmail author


Organisms alter gene expression to adapt to changes in environmental conditions such as temperature, nutrients, inflammatory signals, and stress (Gialitakis et al. in Mol Cell Biol 30:2046–2056, 2010; Conrath in Trends Plant Sci 16:524–531, 2011; Avramova in Plant J 83:149–159, 2015; Solé et al. in Curr Genet 61:299–308, 2015; Ho and Gasch in Curr Genet 61:503–511, 2015; Bevington et al. in EMBO J 35:515–535, 2016; Hilker et al. in Biol Rev Camb Philos Soc 91:1118–1133, 2016). In some cases, organisms can “remember” a previous environmental condition and adapt to that condition more rapidly in the future (Gems and Partridge 2008). Epigenetic transcriptional memory in response to a previous stimulus can produce heritable changes in the response of an organism to the same stimulus, quantitatively or qualitatively altering changes in gene expression (Brickner et al. in PLoS Biol, 5:e81, 2007; Light et al. in Mol Cell 40:112–125, 2010; in PLoS Biol, 11:e1001524, 2013; D’Urso and Brickner in Trends Genet 30:230–236, 2014; Avramova in Plant J 83:149–159, 2015; D’Urso et al. in Elife. doi:  10.7554/eLife.16691, 2016). The role of chromatin changes in controlling binding of poised RNAPII during memory is conserved from yeast to humans. Here, we discuss epigenetic transcriptional memory in different systems and our current understanding of its molecular basis. Our recent work with a well-characterized model for transcriptional memory demonstrated that memory is initiated by binding of a transcription factor, leading to essential changes in chromatin structure and allowing binding of a poised form of RNA polymerase II to promote the rate of future reactivation (D’Urso et al. in Elife. doi:  10.7554/eLife.16691, 2016).


Epigenetics Chromatin Transcription Memory Environmental response Nuclear pore complex Mediator Histone methylation Transcription factor 



The authors thank members of the Brickner laboratory for helpful comments on the manuscript and Nate Delage for help with the figures. The authors are supported by NIH R01 GM118712 (JHB) and T32 GM008061 (AD).


  1. Ardehali MB, Mei A, Zobeck KL et al (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30:2817–2828. doi: 10.1038/emboj.2011.194 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Avramova Z (2015) Transcriptional “memory” of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J 83:149–159. doi: 10.1111/tpj.12832 CrossRefPubMedGoogle Scholar
  3. Berry DB, Gasch AP (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587. doi: 10.1091/mbc.E07-07-0680 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bevington SL, Cauchy P, Piper J et al (2016) Inducible chromatin priming is associated with the establishment of immunological memory in T cells. EMBO J 35:515–535. doi: 10.15252/embj.201592534 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brickner DG, Cajigas I, Fondufe-Mittendorf Y et al (2007) H2A.Z-Mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5:e81. doi: 10.1371/journal.pbio.0050081.st001 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Briggs SD, Bryk M, Strahl BD et al (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15:3286–3295CrossRefPubMedPubMedCentralGoogle Scholar
  7. Capelson M, Liang Y, Schulte R et al (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140:372–383. doi: 10.1016/j.cell.2009.12.054 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531. doi: 10.1016/j.tplants.2011.06.004 CrossRefPubMedGoogle Scholar
  9. Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun 3:740. doi: 10.1038/ncomms1732 CrossRefPubMedGoogle Scholar
  10. Ding Y, Liu N, Virlouvet L et al (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:229. doi: 10.1186/1471-2229-13-229 CrossRefPubMedPubMedCentralGoogle Scholar
  11. D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236. doi: 10.1016/j.tig.2014.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  12. D’Urso A, Takahashi YH, Xiong B et al (2016) Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. Elife. doi: 10.7554/eLife.16691 PubMedPubMedCentralGoogle Scholar
  13. Fujita A, Kikuchi Y, Kuhara S et al (1989) Domains of the SFL1 protein of yeasts are homologous to Myc oncoproteins or yeast heat–shock transcription factor. Gene 85:321–328CrossRefPubMedGoogle Scholar
  14. Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7(3):200–203. doi: 10.1016/j.cmet.2008.01.001 CrossRefPubMedGoogle Scholar
  16. Gialitakis M, Arampatzi P, Makatounakis T, Papamatheakis J (2010) Gamma interferon-dependent transcriptional memory via relocalization of a gene locus to PML nuclear bodies. Mol Cell Biol 30:2046–2056. doi: 10.1128/MCB.00906-09 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guan Q, Haroon S, Bravo DG et al (2012) Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. Genetics 192:495–505. doi: 10.1534/genetics.112.143016 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hilker M, Schwachtje J, Baier M et al (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc 91:1118–1133. doi: 10.1111/brv.12215 CrossRefPubMedGoogle Scholar
  19. Ho Y-H, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511. doi: 10.1007/s00294-015-0491-0 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hughes CM, Rozenblatt-Rosen O, Milne TA et al (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13:587–597CrossRefPubMedGoogle Scholar
  21. Jeronimo C, Robert F (2014) Kin28 regulates the transient association of Mediator with core promoters. Nat Struct Mol Biol 21:449–455. doi: 10.1038/nsmb.2810 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137:259–272. doi: 10.1016/j.cell.2009.02.045 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kim T, Xu Z, Clauder-Münster S et al (2012) Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150:1158–1169. doi: 10.1016/j.cell.2012.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Krogan NJ, Dover J, Khorrami S et al (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277:10753–10755CrossRefPubMedGoogle Scholar
  25. Kundu S, Horn PJ, Peterson CL (2007) SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 21:997–1004CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lämke J, Brzezinka K, Altmann S, Baurle I (2016) A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35:162–175. doi: 10.15252/embj.201592593 CrossRefPubMedGoogle Scholar
  27. Lee J-H, Tate CM, You J-S, Skalnik DG (2007) Identification and characterization of the human Set1B histone H3-Lys(4) methyltransferase complex. J Biol Chem 282:13419–13428. doi: 10.1074/jbc.M609809200 CrossRefPubMedGoogle Scholar
  28. Light WH, Brickner DG, Brand VR, Brickner JH (2010) Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and nbsp; INO1 transcriptional memory. Mol Cell 40:112–125. doi: 10.1016/j.molcel.2010.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Light WH, Freaney J, Sood V et al (2013) A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 11:e1001524. doi: 10.1371/journal.pbio.1001524 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu N, Ding Y, Fromm M, Avramova Z (2014) Different gene-specific mechanisms determine the “revised-response” memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucl Acids Res 42:5556–5566. doi: 10.1093/nar/gku220 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Maxwell CS, Kruesi WS, Core LJ et al (2014) Pol II docking and pausing at growth and stress genes in C. elegans. Cell Rep 6:455–466. doi: 10.1016/j.celrep.2014.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mohan M, Herz H-M, Smith ER et al (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31:4310–4318. doi: 10.1128/MCB.06092-11 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pavri R, Lewis B, Kim T-K et al (2005) PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18:83–96. doi: 10.1016/j.molcel.2005.02.034 CrossRefPubMedGoogle Scholar
  34. Petruk S, Sedkov Y, Smith S et al (2001) Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294:1331–1334. doi: 10.1126/science.1065683 CrossRefPubMedGoogle Scholar
  35. Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol (Amst) 20:481–486. doi: 10.1016/j.tree.2005.06.001 CrossRefGoogle Scholar
  36. Ragunathan K, Jih G, Moazed D (2015) Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348:1258699. doi: 10.1126/science.1258699 CrossRefPubMedGoogle Scholar
  37. Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787CrossRefPubMedPubMedCentralGoogle Scholar
  38. Roguev A, Schaft D, Shevchenko A et al (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20:7137–7148. doi: 10.1093/emboj/20.24.7137 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sani E, Herzyk P, Perrella G et al (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59. doi: 10.1186/gb-2013-14-6-r59 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Santos-Rosa H, Schneider R, Bannister AJ et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411. doi: 10.1038/nature01080 CrossRefPubMedGoogle Scholar
  41. Schaner CE, Deshpande G, Schedl PD, Kelly WG (2003) A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev Cell 5:747–757CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20(3):341–348. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  43. Solé C, Nadal-Ribelles M, de Nadal E, Posas F (2015) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 61:299–308. doi: 10.1007/s00294-014-0453-y CrossRefPubMedGoogle Scholar
  44. Song W, Carlson M (1998) Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J 17:5757–5765. doi: 10.1093/emboj/17.19.5757 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23:2610–2624. doi: 10.1101/gad.1823209 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wong KH, Jin Y, Struhl K (2014) TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol Cell 54:601–612. doi: 10.1016/j.molcel.2014.03.024 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wu M, Wang PF, Lee J-S et al (2008) Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol 28:7337–7344. doi: 10.1128/MCB.00976-08 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zacharioudakis I, Gligoris T, Tzamarias D (2007) A yeast catabolic enzyme controls transcriptional memory. Curr Biol 17:2041–2046CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Molecular BiosciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations