Advertisement

Current Genetics

, Volume 63, Issue 3, pp 411–416 | Cite as

DNA repeat sequences: diversity and versatility of functions

  • Zhong Qian
  • Sankar Adhya
Review

Abstract

Although discovered decades ago, the molecular identification, the diversity and versatility of functions, and the evolutionary origin of repeat DNA sequences (REPs) containing palindromic units in prokaryotes are now bringing attention to a wide range of biological scientists. A brief account of the current state of the repeat DNA sequences is presented here.

Keywords

Palindromic units Repeat DNA sequence naRNA BIME REP 

Notes

Acknowledgments

The work on naRNA was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, and the Center for Cancer Research.

References

  1. Aranda-Olmedo I, Tobes R, Manzanera M, Ramos JL, Marques S (2002) Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. Nucl Acids Res 30:1826–1833CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arthanari H, Wojtuszewski K, Mukerji I, Bolton PH (2004) Effects of HU binding on the equilibrium cyclization of mismatched, curved, and normal DNA. Biophys J 86:1625–1631CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bachellier S, Perrin D, Hofnung M, Gilson E (1993) Bacterial interspersed mosaic elements (BIMEs) are present in the genome of Klebsiella. Mol Microbiol 7:537–544CrossRefPubMedGoogle Scholar
  4. Bachellier S, Saurin W, Perrin D, Hofnung M, Gilson E (1994) Structural and functional diversity among bacterial interspersed mosaic elements (BIMEs). Mol Microbiol 12:61–70CrossRefPubMedGoogle Scholar
  5. Bachellier S, Clement JM, Hofnung M (1999) Short palindromic repetitive DNA elements in enterobacteria: a survey. Res Microbiol 150:627–639CrossRefPubMedGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  7. Boccard F, Prentki P (1993) Specific interaction of IHF with RIBs, a class of bacterial repetitive DNA elements located at the 3′ end of transcription units. EMBO J 12:5019–5027PubMedPubMedCentralGoogle Scholar
  8. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR (2015) Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–139CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G, Ton-Hoang B (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11:525–538CrossRefPubMedGoogle Scholar
  10. Dimri GP, Rudd KE, Morgan MK, Bayat H, Ames GF (1992) Physical mapping of repetitive extragenic palindromic sequences in Escherichia coli and phylogenetic distribution among Escherichia coli strains and other enteric bacteria. J Bacteriol 174:4583–4593CrossRefPubMedPubMedCentralGoogle Scholar
  11. Espeli O, Boccard F (1997) In vivo cleavage of Escherichia coli BIME-2 repeats by DNA gyrase: genetic characterization of the target and identification of the cut site. Mol Microbiol 26:767–777CrossRefPubMedGoogle Scholar
  12. Espeli O, Moulin L, Boccard F (2001) Transcription attenuation associated with bacterial repetitive extragenic BIME elements. J Mol Biol 314:375–386CrossRefPubMedGoogle Scholar
  13. Filee J, Siguier P, Chandler M (2007) Insertion sequence diversity in archaea. Microbiol Mol Biol Rev MMBR 71:121–157CrossRefPubMedGoogle Scholar
  14. Florek MC, Gilbert DP, Plague GR (2014) Insertion sequence distribution bias in Archaea. Mob Genet Elem 4:e27829CrossRefGoogle Scholar
  15. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71CrossRefPubMedGoogle Scholar
  16. George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61:665–677CrossRefPubMedGoogle Scholar
  17. Gilson E, Clement JM, Brutlag D, Hofnung M (1984) A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J 3:1417–1421PubMedPubMedCentralGoogle Scholar
  18. Gilson E, Perrin D, Clement JM, Szmelcman S, Dassa E, Hofnung M (1986) Palindromic units from E. coli as binding sites for a chromoid-associated protein. FEBS Lett 206:323–328CrossRefPubMedGoogle Scholar
  19. Gilson E, Perrin D, Hofnung M (1990) DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucl Acids Res 18:3941–3952CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M (1991a) The BIME family of bacterial highly repetitive sequences. Res Microbiol 142:217–222CrossRefPubMedGoogle Scholar
  21. Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M (1991b) Palindromic units are part of a new bacterial interspersed mosaic element (BIME). Nucl Acids Res 19:1375–1383CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hammel M, Amlanjyoti D, Reyes FE, Chen JH, Parpana R, Tang HY, Larabell CA, Tainer JA, Adhya S (2016) HU multimerization shift controls nucleoid compaction. Sci Adv 2:e1600650CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 121:367–387CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hatfield GW, Benham CJ (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 36:175–203CrossRefPubMedGoogle Scholar
  25. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745CrossRefPubMedGoogle Scholar
  26. Hickman AB, Dyda F (2015) Mechanisms of DNA transposition. Microbiology spectrum 3: MDNA3-0034-2014Google Scholar
  27. Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M (1982) A novel intercistronic regulatory element of prokaryotic operons. Nature 298:760–762CrossRefPubMedGoogle Scholar
  28. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  29. Ishihama A (2009) The nucleoid: an overview. EcoSal Plus. doi:  10.1128/ecosalplus.2.6
  30. Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 8:340–344CrossRefPubMedGoogle Scholar
  31. Kar S, Edgar R, Adhya S (2005) Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci USA 102:16397–16402CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lam S, Roth JR (1983) IS200: a Salmonella-specific insertion sequence. Cell 34:951–960CrossRefPubMedGoogle Scholar
  33. Lee R, Feinbaum R, Ambros V (2004) A short history of a short RNA. Cell 116:S89–S92 (1 p following S96) CrossRefPubMedGoogle Scholar
  34. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027CrossRefPubMedPubMedCentralGoogle Scholar
  35. Macvanin M, Adhya S (2012) Architectural organization in E. coli nucleoid. Biochim Biophys Acta 1819:830–835CrossRefPubMedGoogle Scholar
  36. Macvanin M, Edgar R, Cui F, Trostel A, Zhurkin V, Adhya S (2012) Noncoding RNAs binding to the nucleoid protein HU in Escherichia coli. J Bacteriol 194:6046–6055CrossRefPubMedPubMedCentralGoogle Scholar
  37. Magnusson M, Tobes R, Sancho J, Pareja E (2007) Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9. J Immunol 179:31–35CrossRefPubMedGoogle Scholar
  38. Maxwell A, Gellert M (1986) Mechanistic aspects of DNA topoisomerases. Adv Protein Chem 38:69–107CrossRefPubMedGoogle Scholar
  39. Messing SA, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F (2012) The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucl Acids Res 40:9964–9979CrossRefPubMedPubMedCentralGoogle Scholar
  40. Morrison A, Cozzarelli NR (1979) Site-specific cleavage of DNA by E. coli DNA gyrase. Cell 17:175–184CrossRefPubMedGoogle Scholar
  41. Nunvar J, Huckova T, Licha I (2010) Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genom 11:44CrossRefGoogle Scholar
  42. Oppenheim AB, Rudd KE, Mendelson I, Teff D (1993) Integration host factor binds to a unique class of complex repetitive extragenic DNA sequences in Escherichia coli. Mol Microbiol 10:113–122CrossRefPubMedGoogle Scholar
  43. Parthiban P, Mahendra J (2015) Toll-like receptors: a key marker for periodontal disease and preterm birth—a contemporary review. J Clin Diagn Res JCDR 9:ZE14–ZE17PubMedGoogle Scholar
  44. Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779CrossRefPubMedPubMedCentralGoogle Scholar
  45. Qian Z, Macvanin M, Dimitriadis EK, He X, Zhurkin V, Adhya S (2015) A new noncoding RNA arranges bacterial chromosome organization. mBio 6(4):e00998–15. doi: 10.1128/mBio.00998-15.
  46. Raghavan R, Groisman EA, Ochman H (2011) Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 21:1487–1497CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rocco F, De Gregorio E, Di Nocera PP (2010) A giant family of short palindromic sequences in Stenotrophomonas maltophilia. FEMS Microbiol Lett 308:185–192PubMedGoogle Scholar
  48. Rudd KE (1998) Linkage map of Escherichia coli K-12, edition 10: the physical map. Microbiol Mol Biol Rev MMBR 62:985–1019PubMedGoogle Scholar
  49. Sternberg SH, Richter H, Charpentier E, Qimron U (2016) Adaptation in CRISPR-Cas systems. Mol Cell 61:797–808CrossRefPubMedGoogle Scholar
  50. Tobes R, Pareja E (2005) Repetitive extragenic palindromic sequences in the Pseudomonas syringae pv. tomato DC3000 genome: extragenic signals for genome reannotation. Res Microbiol 156:424–433CrossRefPubMedGoogle Scholar
  51. Tobes R, Ramos JL (2005) REP code: defining bacterial identity in extragenic space. Environ Microbiol 7:225–228CrossRefPubMedGoogle Scholar
  52. Ton-Hoang B, Siguier P, Quentin Y, Onillon S, Marty B, Fichant G, Chandler M (2012) Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences. Nucl Acids Res 40:3596–3609CrossRefPubMedGoogle Scholar
  53. Yang Y, Ames GF (1988) DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc Natl Acad Sci USA 85:8850–8854CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yang J, Li F (2016) Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet. doi: 10.1007/s00294-016-0619-x

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Laboratory of Molecular BiologyNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations