Advertisement

Current Genetics

, Volume 62, Issue 4, pp 753–757 | Cite as

Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives

  • Paul E. OrndorffEmail author
Review

Abstract

Bacteriophages (phage) that infect pathogenic bacteria often attach to surface receptors that are coincidentally required for virulence. Receptor loss or modification through mutation renders mutants both attenuated and phage resistant. Such attenuated mutants frequently have no apparent laboratory growth defects, but in the host, they fail to exhibit properties needed to produce disease such as mucosal colonization or survival within professional phagocytic cells. The connection between attenuation and phage resistance has been exploited in experimental demonstrations of phage therapy. In such experiments, phage resistant mutants that arise naturally during therapy are inconsequential because of their attenuated status. A more contemporary approach to exploiting this connection involves identifying small effector molecules, identified in high-throughput screens, that inhibit one or more of the steps needed to produce a functioning phage receptor. Since such biosynthetic steps are unique to bacteria, inhibitors can be utilized therapeutically, in lieu of antibiotics. Also, since the inhibitor is specific to a particular bacterium or group of bacteria, no off-target resistance is generated in the host’s commensal bacterial population. This brief review covers examples of how mutations that confer phage resistance produce attenuation, and how this coincidental relationship can be exploited in the search for the next generation of therapeutic agents for bacterial diseases.

Keywords

Bacteriophage Phage Receptor Attenuation Therapy Antibiotic Alternative Antivirulence factor 

Notes

Acknowledgments

My thanks to Edward A. Havell, Patricia A. Spears, Luke B. Borst and Johanna R. Elfenbein for a critical reading of this manuscript prior to submission. Work in the author’s laboratory is supported by Public Health Service Grants AI103549, AI083838, and AI064333.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. Allison GE, Verma NK (2000) Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol 8:17–23. doi: 10.1016/S0966-842X(99)01646-7 CrossRefPubMedGoogle Scholar
  2. Arp LH, Cheville NF (1984) Tracheal lesions in young turkeys infected with Bordetella avium. Am J Vet Res 45:2196–2200PubMedGoogle Scholar
  3. Autret N, Dubail I, Trieu-Cuot P, Berche P, Charbit A (2001) Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun 69:2054–2065CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barnes HJ, Hofstad MS (1983) Susceptibility of turkey poults from vaccinated and unvaccinated hens to alcaligenes rhinotracheitis (Turkey coryza). Avian Dis 27:378–392CrossRefPubMedGoogle Scholar
  5. Bogomolnaya LM, Santiviago CA, Yang HJ, Baumler AJ, Andrews-Polymenis HL (2008) ‘Form variation’ of the O12 antigen is critical for persistence of Salmonella typhimurium in the murine intestine. Mol Microbiol 70:1105–1119. doi: 10.1111/j.1365-2958.2008.06461.x CrossRefPubMedGoogle Scholar
  6. Brown S et al (2012) Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci USA 109:18909–18914. doi: 10.1073/pnas.1209126109 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown S, Santa Maria JP Jr, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336. doi: 10.1146/annurev-micro-092412-155620 CrossRefPubMedGoogle Scholar
  8. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548CrossRefPubMedGoogle Scholar
  9. d’Herelle F (1926) The behavior of the bacteriophage in epidemics, Chapter IV,p 490–497. Williams & Wilkins, Baltimore, doi: 10.5962/bhl.title.7308
  10. d’Herelle F (1931) Bacterial mutations. Yale J Biol Med 4:55–61PubMedPubMedCentralGoogle Scholar
  11. Domingo-Calap P, Georgel P, Bahram S (2016) Back to the future: bacteriophages as promising therapeutic tools. HLA 87:133–140. doi: 10.1111/tan.12742 CrossRefPubMedGoogle Scholar
  12. Doyle RJ, McDannel ML, Streips UN, Birdsell DC, Young FE (1974) Polyelectrolyte nature of bacterial teichoic acids. J Bacteriol 118:606–615PubMedPubMedCentralGoogle Scholar
  13. Dussurget O, Pizarro-Cerda J, Cossart P (2004) Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol 58:587–610. doi: 10.1146/annurev.micro.57.030502.090934 CrossRefPubMedGoogle Scholar
  14. Eaton MD, Bayne-Jones S (1934) Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections. JAMA 103:1847–1853CrossRefGoogle Scholar
  15. Eugster MR, Haug MC, Huwiler SG, Loessner MJ (2011) The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Mol Microbiol 81:1419–1432. doi: 10.1111/j.1365-2958.2011.07774.x CrossRefPubMedGoogle Scholar
  16. Faith N et al (2009) The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in A/J mice. Foodborne Pathog Dis 6:39–48. doi: 10.1089/fpd.2008.0154 CrossRefPubMedGoogle Scholar
  17. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511PubMedPubMedCentralGoogle Scholar
  18. Finan TM et al (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877CrossRefPubMedGoogle Scholar
  19. Fourches D, Muratov E, Ding F, Dokholyan NV, Tropsha A (2013) Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches. J Chem Inf Model 53:1915–1922. doi: 10.1021/ci400216q CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fourches D, Sassano MF, Roth BL, Tropsha A (2014) HTS navigator: freely accessible cheminformatics software for analyzing high-throughput screening data. Bioinformatics 30:588–589. doi: 10.1093/bioinformatics/btt718 CrossRefPubMedGoogle Scholar
  21. Ghosh P (2004) Process of protein transport by the Type III secretion system. Microbiol Mol Biol Rev 68:771–795. doi: 10.1128/mmbr.68.4.771-795.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gray ML, Killinger AH (1966) Listeria monocytogenes and listeric infections. Bacteriol Rev 30:309–382PubMedPubMedCentralGoogle Scholar
  23. Jackwood MW, Saif YM (2003) Bordetellosis. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougal LR, Swayne DE (eds) Diseases of Poultry. 11 edn. Iowa State University Press, AmesGoogle Scholar
  24. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Micro 8:317–327CrossRefGoogle Scholar
  25. Leon M, Bastias R (2015) Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 6:1–7. doi: 10.3389/fmicb.2015.00343 Google Scholar
  26. Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:205–241. doi: 10.1146/annurev.mi.27.100173.001225 CrossRefPubMedGoogle Scholar
  27. Ling LL et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459CrossRefPubMedGoogle Scholar
  28. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114. doi: 10.4161/bact.1.2.14590 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511PubMedPubMedCentralGoogle Scholar
  30. Miller A (2016) Antibacterial development: a changing landscape. Microbe Mag 11:111–118. doi: 10.1128/microbe.11.111.1 CrossRefGoogle Scholar
  31. Nicholson JK, Wilson ID (2003) Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676CrossRefPubMedGoogle Scholar
  32. Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191. doi: 10.1016/j.tim.2015.01.006 CrossRefPubMedGoogle Scholar
  33. Pelzek AJ, Schuch R, Schmitz JE, Fischetti VA (2008) Isolation, culture, and characterization of bacteriophages. In: Current protocols essential laboratory techniques. Wiley, Newyork, Inc. doi: 10.1002/9780470089941.et0404s07
  34. Portnoy DA, Auerbuch V, Glomski IJ (2002) The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol 158:409–414CrossRefPubMedPubMedCentralGoogle Scholar
  35. Raleigh EA, Signer ER (1982) Positive selection of nodulation-deficient Rhizobium phaseoli. J Bacteriol 151:83–88PubMedPubMedCentralGoogle Scholar
  36. Richter SG, Elli D, Kim HK, Hendrickx AP, Sorg JA, Schneewind O, Missiakas D (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for gram-positive bacteria. Proc Natl Acad Sci USA 110:3531–3536. doi: 10.1073/pnas.1217337110 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shelton CB, Crosslin DR, Casey JL, Ng S, Temple LM, Orndorff PE (2000) Discovery, purification, and characterization of a temperate transducing bacteriophage for Bordetella avium. J Bacteriol 182:6130–6136CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shelton CB, Temple LM, Orndorff PE (2002) Use of bacteriophage Ba1 to identify properties associated with Bordetella avium virulence. Infect Immun 70:1219–1224CrossRefPubMedPubMedCentralGoogle Scholar
  39. Smith HW, Huggins MB (1980) The association of the O18, K1 and H7 antigens and the Co1 V plasmid of a strain of Escherichia coli with its virulence and immunogenicity. J Gen Microbiol 121:387–400. doi: 10.1099/00221287-121-2-387 PubMedGoogle Scholar
  40. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318. doi: 10.1099/00221287-128-2-307 PubMedGoogle Scholar
  41. Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675. doi: 10.1099/00221287-129-8-2659 PubMedGoogle Scholar
  42. Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133:1111–1126. doi: 10.1099/00221287-133-5-1111 PubMedGoogle Scholar
  43. Spears PA, Temple LM, Orndorff PE (2000) A role for lipopolysaccharide in turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro. Mol Microbiol 36:1425–1435CrossRefPubMedPubMedCentralGoogle Scholar
  44. Spears PA, Suyemoto MM, Palermo AM, Horton JR, Hamrick TS, Havell EA, Orndorff PE (2008) A Listeria monocytogenes mutant defective in bacteriophage attachment is attenuated in orally inoculated mice and impaired in enterocyte intracellular growth. Infect Immun 76:4046–4054CrossRefPubMedPubMedCentralGoogle Scholar
  45. Spears PA, Suyemoto MM, Hamrick TS, Wolf RL, Havell EA, Orndorff PE (2011) In vitro properties of a Listeria monocytogenes bacteriophage-resistant mutant predict Its efficacy as a live oral vaccine strain. Infect Immun 79:5001–5009. doi: 10.1128/IAI.05700-11 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Spears PA et al (2016) Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread. Mol Microbiol. doi: 10.1111/mmi.13353 PubMedGoogle Scholar
  47. Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55:437–451. doi: 10.1146/annurev.micro.55.1.43755/1/437 CrossRefPubMedGoogle Scholar
  48. Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608CrossRefPubMedGoogle Scholar
  49. West NP et al (2005) Optimization of virulence functions through glucosylation of Shigella LPS. Science 307:1313–1317CrossRefPubMedGoogle Scholar
  50. Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A (2010) Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J Biol Chem 285:13405–13415. doi: 10.1074/jbc.M109.096172 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA

Personalised recommendations