Current Genetics

, Volume 62, Issue 4, pp 887–896 | Cite as

Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms)

  • Naoyuki Tajima
  • Kenji Saitoh
  • Shusei Sato
  • Fumito Maruyama
  • Mutsuo Ichinomiya
  • Shinya Yoshikawa
  • Ken Kurokawa
  • Hiroyuki Ohta
  • Satoshi Tabata
  • Akira Kuwata
  • Naoki Sato
Original Article


We sequenced the complete plastid and mitochondrial genomes of the unicellular marine phytoplankton Triparma laevis, belonging to the order Parmales (Heterokonta). The cells of Parmales are surrounded by silicified cell walls, similar to Bacillariophyta (diatoms). T. laevis was recognized as a sister group of Bacillariophyta using a molecular phylogenetic analysis based on SSU rDNA and rbcL sequences. Bacillariophyta are the most successful group of phytoplankton in the modern ocean, but the origin and early evolution of them have not been clearly established. Detailed molecular analyses of T. laevis may increase our understanding of the evolutionary relationships among Parmales and Bacillariophyta. The gene contents of the plastid and mitochondrial genomes are similar between T. laevis and Bacillariophyta. The gene order of the plastid genome is also similar to Bacillariophyta, whereas the gene order of the mitochondrial genome is not conserved in Bacillariophyta, but the structure is more compact than Bacillariophyta. Phylogenetic analyses, using plastid-encoded concatenated amino acid datasets and mitochondria-encoded concatenated amino acid datasets suggest that T. laevis is a sister group of Bacillariophyta. These results suggest that the characteristics of the organellar genomes of T. laevis are similar and conserve ancestral characteristics more than Bacillariophyta.


Genome sequencing Heterokonta Mitochondrial genome Parmales Plastid genome Triparma laevis 



This work was supported in part by a Grant-in-Aid for the Global COE Program, “From the Earth to Earths” and Scientific Research (No. 26291085) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and the Canon Foundation (A. K. and N. S.).

Supplementary material

294_2016_598_MOESM1_ESM.pdf (452 kb)
Supplementary material 1 (PDF 452 kb)
294_2016_598_MOESM2_ESM.xlsx (17 kb)
Supplementary material 2 (XLSX 16 kb)
294_2016_598_MOESM3_ESM.xlsx (48 kb)
Supplementary material 3 (XLSX 48 kb)
294_2016_598_MOESM4_ESM.aln (899 kb)
Supplementary material 4 (ALN 899 kb)
294_2016_598_MOESM5_ESM.aln (192 kb)
Supplementary material 5 (ALN 191 kb)
294_2016_598_MOESM6_ESM.aln (1.4 mb)
Supplementary material 6 (ALN 1421 kb)
294_2016_598_MOESM7_ESM.aln (205 kb)
Supplementary material 7 (ALN 204 kb)
294_2016_598_MOESM8_ESM.aln (219 kb)
Supplementary material 8 (ALN 219 kb)
294_2016_598_MOESM9_ESM.aln (234 kb)
Supplementary material 9 (ALN 233 kb)
294_2016_598_MOESM10_ESM.aln (23 kb)
Supplementary material 10 (ALN 23 kb)
294_2016_598_MOESM11_ESM.xls (145 kb)
Supplementary material 11 (XLS 145 kb)
294_2016_598_MOESM12_ESM.xls (52 kb)
Supplementary material 12 (XLS 52 kb)


  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Booth BC, Marchant HJ (1987) Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. J Phycol 23:245–260CrossRefGoogle Scholar
  4. Booth BC, Lewin J, Norris RE (1980) Siliceous nanoplankton. 1. Newly discovered cysts from the Gulf of Alaska. Mar Biol 58:205–209CrossRefGoogle Scholar
  5. Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73:203–266CrossRefPubMedGoogle Scholar
  6. Daugbjerg N, Guillou L (2001) Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms. Phycologia 40:153–161CrossRefGoogle Scholar
  7. Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882CrossRefPubMedGoogle Scholar
  8. Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49:827–831CrossRefPubMedGoogle Scholar
  9. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410CrossRefGoogle Scholar
  10. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  11. Fox TD (1979) Five TGA “stop” codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II. Proc Natl Acad Sci USA 76:6534–6538CrossRefPubMedPubMedCentralGoogle Scholar
  12. Glöckner G, Rosenthal A, Valentin K (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51:382–390PubMedGoogle Scholar
  13. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  14. Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Loiseaux-de Göer S, Vaulot D (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381CrossRefGoogle Scholar
  15. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  16. Ichinomiya M, Kuwata A (2015) Seasonal variation in abundance and species composition of the Parmales community in the Oyashio region, western North Pacific. Aquat Microb Ecol 75:207–223CrossRefGoogle Scholar
  17. Ichinomiya M, Yoshikawa S, Kamiya M, Ohki K, Takaichi S, Kuwata A (2011) Isolation and characterization of Palmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, western North Pacific. J Phycol 47:144–151CrossRefPubMedGoogle Scholar
  18. Kim E, Archibald JM (2009) Diversity and evolution of plastids and their genomes. The chloroplast—interactions with the environment. In: Aronsson H, Sandelius AS (eds) Plant cell monographs, vol 13. Springer, Berlin, pp 1–39Google Scholar
  19. Komuro C, Narita H, Imai K, Nojiri Y, Jordan RW (2005) Microplankton assemblages at Station KNOT in the subarctic western Pacific, 1999–2000. Deep Sea Res Part II: Top Stud Oceanogr 52:2206–2217CrossRefGoogle Scholar
  20. Konno S, Jordan RW (2007) An amended terminology for the Parmales (Chrysophyceae). Phycologia 46:612–616CrossRefGoogle Scholar
  21. Kosman CA, Thomsen HA, Østergaard JB (1993) Parmales (Chrysophyceae) from Mexican, Californian, Baltic, Arctic and Antarctic waters with the description of a new subspecies and several new forms. Phycologia 32:116–128CrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  23. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320CrossRefPubMedGoogle Scholar
  24. Lommer M, Roy AS, Schilhabel M, Schreiber S, Rosenstiel P, LaRoche J (2010) Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation. BMC Genom 11:718CrossRefGoogle Scholar
  25. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495CrossRefGoogle Scholar
  27. Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions, and origins of diatom species. J Eukaryot Microbiol 60:414–420CrossRefPubMedGoogle Scholar
  28. Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372CrossRefGoogle Scholar
  29. Nishida S (1986) Nanoplankton flora in the Southern Ocean, with special reference to siliceous varieties. Mem Nat Inst Polar Res Spec Issue 40:56–68Google Scholar
  30. Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15:387–396CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oudot-Le Secq MP, Green BR (2011) Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Gene 476:20–26CrossRefPubMedGoogle Scholar
  32. Oudot-Le Secq MP, Loiseaux-de Goër S, Stam WT, Olsen JL (2006) Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis. Curr Genet 49:47–58CrossRefPubMedGoogle Scholar
  33. Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439CrossRefPubMedGoogle Scholar
  34. Prihoda J, Tanaka A, de Paula WB, Allen JF, Tirichine L, Bowler C (2012) Chloroplast-mitochondria cross-talk in diatoms. J Exp Bot 63:1543–1557CrossRefPubMedGoogle Scholar
  35. Qiu H, Yang EC, Bhattacharya D, Yoon HS (2012) Ancient gene paralogy may mislead inference of plastid phylogeny. Mol Biol Evol 29:3333–3343CrossRefPubMedGoogle Scholar
  36. Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  38. Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ (2014) Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol Evol 6:644–654CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945CrossRefPubMedGoogle Scholar
  40. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274CrossRefPubMedGoogle Scholar
  41. Sasaki NV, Sato N (2010) CyanoClust: comparative genome resources of cyanobacteria and plastids. Database 2010:bap025CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sato N (2000) SISEQ: manipulation of multiple sequence and large database files for common platforms. Bioinformatics 16:180–181CrossRefPubMedGoogle Scholar
  43. Sato N (2009) Gclust: trans-kingdom classification of proteins using automatic individual threshold setting. Bioinformatics 25:599–605CrossRefPubMedGoogle Scholar
  44. Silver MW, Mitchell JG, Ringo DL (1980) Siliceous nanoplankton. II. Newly discovered cysts and abundant choanoflagellates from the Weddell Sea, Antarctica. Mar Biol 58:211–217CrossRefGoogle Scholar
  45. Smith DR, Hua J, Lee RW, Keeling PJ (2012) Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture. Mol Phylogenet Evol 65:339–344CrossRefPubMedGoogle Scholar
  46. Smith DR, Arrigo KR, Alderkamp AC, Allen AE (2014) Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Mol Phylogenet Evol 71:36–40CrossRefPubMedGoogle Scholar
  47. Starkenburg SR, Kwon KJ, Jha RK, McKay C, Jacobs M, Chertkov O, Twary S, Rocap G, Cattolico RA (2014) A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genom 15:212CrossRefGoogle Scholar
  48. Tajima N, Sato S, Maruyama F, Kurokawa K, Ohta H, Tabata S, Sekine K, Moriyama T, Sato N (2014) Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum. J Plant Res 127:389–397CrossRefPubMedGoogle Scholar
  49. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  50. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699CrossRefPubMedGoogle Scholar
  51. Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the alphaproteobacteria. J Bacteriol 189:4578–4586CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, Andersen RA, Yoon HS (2012) Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163:217–231CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Naoyuki Tajima
    • 1
  • Kenji Saitoh
    • 2
  • Shusei Sato
    • 3
  • Fumito Maruyama
    • 4
  • Mutsuo Ichinomiya
    • 5
  • Shinya Yoshikawa
    • 6
  • Ken Kurokawa
    • 7
  • Hiroyuki Ohta
    • 8
  • Satoshi Tabata
    • 9
  • Akira Kuwata
    • 10
  • Naoki Sato
    • 1
  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesUniversity of TokyoMeguro-kuJapan
  2. 2.National Research Institute of Fisheries ScienceJapan Fisheries Research and Education AgencyYokohamaJapan
  3. 3.Department of Environmental Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan
  4. 4.Graduate School of Medicine and Faculty of Medicine Kyoto University, Section of MicrobiologyKyotoJapan
  5. 5.Faculty of Environmental and Symbiotic SciencesPrefectural University of KumamotoKumamotoJapan
  6. 6.Faculty of Marine BioscienceFukui Prefectural UniversityObamaJapan
  7. 7.Department of Biological InformationTokyo Institute of TechnologyYokohamaJapan
  8. 8.Center for Biological Resources and InformaticsTokyo Institute of TechnologyYokohamaJapan
  9. 9.Kazusa DNA Research InstituteKisarazuJapan
  10. 10.Tohoku National Fisheries Research InstituteJapan Fisheries Research and Education AgencyShiogamaJapan

Personalised recommendations