Advertisement

Current Genetics

, Volume 62, Issue 3, pp 607–617 | Cite as

Partial suppression of the respiratory defect of qrs1/her2 glutamyl-tRNA amidotransferase mutants by overexpression of the mitochondrial pentatricopeptide Msc6p

  • Bruno S. Moda
  • José Ribamar Ferreira-Júnior
  • Mario H. BarrosEmail author
Original Article

Abstract

Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.

Keywords Mitochondria Saccharomyces cerevisiae Respiratory chain Mitochondrial translation 

Notes

Acknowledgments

We thank Dr. Alexander Tzagoloff (Columbia University) for the critic review of the manuscript and helpful comments. This work was supported by grants and fellowships from Fundação de Amparo a Pesquisa de São Paulo (FAPESP—2013/09482-8), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 302935/2014-2). Bruno Moda is a fellowship recipient from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

  1. Antonicka H, Shoubridge EA (2015) Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep 10:920–932CrossRefGoogle Scholar
  2. Araiso Y, Huot JL, Sekiguchi T, Frechin M, Fischer F, Enkler L, Senger B, Ishitani R, Becker HD, Nureki O (2014) Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases. Nucleic Acids Res 42:6052–6063CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barrientos A (2015) Mitochondriolus: assembling mitoribosomes. Oncotarget 6:16800–16801CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barros MH, Rak M, Paulela JA, Tzagoloff A (2011) Characterization of Gtf1p, the connector subunit of yeast mitochondrial tRNA-dependent amidotransferase. J Biol Chem 286:32937–32947CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bleicher L, Lemke N, Garratt RC (2011) Using amino acid correlation and community detection algorithms to identify functional determinants in protein families. PLoS One 6:1–11CrossRefGoogle Scholar
  6. Botstein D, Davis RW (1982) The molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. In: Strathern JN, Jones EW, Broach JR (eds) pp 607–636, Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  7. Curnow AW, Hong KW, Yuan R, Kim SI, Martins O, Winkler W, Henkin TM, Söll D (1997) Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci USA 94:11819–11826CrossRefPubMedPubMedCentralGoogle Scholar
  8. Daoud R, Forget L, Lang BF (2012) Yeast mitochondrial RNase P, RNase Z and the RNA degradosome are part of a stable supercomplex. Nucleic Acids Res 40:1728–1736CrossRefPubMedGoogle Scholar
  9. Ellis TP, Helfenbein KG, Tzagoloff A, Dieckmann CL (2004) Aep3p stabilizes the mitochondrial bicistronic mRNA encoding subunits 6 and 8 of the H+-translocating ATP synthase of Saccharomyces cerevisiae. J Biol Chem 279:15728–15733CrossRefPubMedGoogle Scholar
  10. Faye G, Kujawa C, Fukuhara H (1974) Physical and genetic organization of petite and grande yeast mitochondrial DNA: iV. †† Paper III in this series is Michel et al. 1974. In vivo transcription products of mitochondrial DNA and localization of 23 S ribosomal RNA in petite mutants of Saccharo. J Mol Biol 88:185–203CrossRefPubMedGoogle Scholar
  11. Feng L, Sheppard K, Tumbula-Hansen D, Söll D (2005) Gln-tRNAGln formation from Glu-tRNAGln requires cooperation of an asparaginase and a Glu-tRNAGln kinase. J Biol Chem 280:8150–8155CrossRefPubMedGoogle Scholar
  12. Ferreira-Júnior JR, Bleicher L, Barros MH (2013) Her2p molecular modeling, mutant analysis and intramitochondrial localization. Fungal Genet Biol 60:133–139CrossRefPubMedGoogle Scholar
  13. Frechin M, Senger B, Braye M, Kern D, Martin RP, Becker HD (2009) Yeast mitochondrial Gln-tRNAGlnis generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 23:1119–1130CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garcia-Gomez JJ, Lebaron S, Froment C, Monsarrat B, Henry Y, la de Cruz J (2011) Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae. Mol Cell Biol 31:4156–4164CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hell K, Tzagoloff A, Neupert W, Stuart RA (2000) Identification of Cox20p, a novel protein involved in the maturation and assembly of cytochrome oxidase subunit 2. J Biol Chem 275:4571–4578CrossRefPubMedGoogle Scholar
  16. Herbert CJ, Golik P, Bonnefoy N (2013) Yeast PPR proteins, watchdogs of mitochondrial gene expression. RNA Biol 10:1477–1494CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167CrossRefPubMedGoogle Scholar
  18. Islas-Osuna MA, Ellis TP, Mittelmeier TM, Dieckmann CL (2003) Suppressor mutations define two regions in the Cbp1 protein important for mitochondrial cytochrome b mRNA stability in Saccharomyces cerevisiae. Curr Genet 43:327–336CrossRefPubMedGoogle Scholar
  19. Kehrein K, Möller-Hergt BV, Ott M (2015a) The MIOREX complex: lean management of mitochondrial gene expression. Oncotarget 6:16806–16807CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kehrein K, Schilling R, Möller-Hergt BV, Wurm CA, Jakobs S, Lamkemeyer T, Langer T, Ott M (2015b) Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies. Cell Rep 10:843–853Google Scholar
  21. Krause K, Lopes de Souza R, Roberts DGW, Dieckmann CL (2004) The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. Mol Biol Cell 15:2674–2683CrossRefPubMedPubMedCentralGoogle Scholar
  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  23. Lipinski KA, Puchta O, Surendranath V, Kudla M, Golik P (2011) Revisiting the yeast PPR proteins-application of an iterative hidden markov model algorithm reveals new members of the rapidly evolving family. Mol Biol Evol 28:2935–2948CrossRefPubMedGoogle Scholar
  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  25. Manna S (2015) An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113:93–99CrossRefPubMedGoogle Scholar
  26. Markov DA, Wojtas ID, Tessitore K, Henderson S, McAllister WT (2014) Yeast DEAD box protein Mss116p is a transcription elongation factor that modulates the activity of mitochondrial RNA polymerase. Mol Cell Biol 34:2360–2369CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mileni M, Garfunkle J, DeMartino JK, Cravatt BF, Boger DL, Stevens RC (2009) Binding and inactivation mechanism of a humanized fatty acid amide hydrolase by α-ketoheterocycle inhibitors revealed from cocrystal structures. J Am Chem Soc 131:10497–10506CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nagao A, Suzuki T, Katoh T, Sakaguchi Y, Suzuki T (2009) Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Proc Natl Acad Sci USA 106:16209–16214CrossRefPubMedPubMedCentralGoogle Scholar
  29. Naithani S, Saracco SA, Butler CA, Fox TD (2003) Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 14:324–333CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nouet C, Bourens M, Hlavacek O, Marsy S, Lemaire C, Dujardin G (2007) Rmd9p controls the processing/stability of mitochondrial mRNAs and its overexpression compensates for a partial deficiency of oxa1p in Saccharomyces cerevisiae. Genetics 175:1105–1115CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nunnari J, Fox D, Walter P (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004CrossRefPubMedGoogle Scholar
  32. Pon L, Moll T, Vestweber D, Marshallsay B, Schatz G (1989) Protein import into mitochondria: aTP-dependent protein translocation activity in a submitochondrial fraction enriched in membrane contact sites and specific proteins. J Cell Biol 109:2603–2616CrossRefPubMedGoogle Scholar
  33. Pujol C, Bailly M, Kern D, Maréchal-Drouard L, Becker H, Duchêne A-M (2008) Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants. Proc Natl Acad Sci USA 105:6481–6485CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rodeheffer MS, Boone BE, Bryan AC, Shadel GS (2001) Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem 276:8616–8622CrossRefPubMedGoogle Scholar
  35. Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211CrossRefPubMedGoogle Scholar
  36. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346CrossRefPubMedGoogle Scholar
  37. Schonauer MS, Kastaniotis AJ, Hiltunen JK, Dieckmann CL (2008) Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria. Mol Cell Biol 28:6646–6657CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sharpe Elles LM, Sykes MT, Williamson JR, Uhlenbeck OC (2009) A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res 37:6503–6514CrossRefPubMedPubMedCentralGoogle Scholar
  39. Solotoff V, Moseler R, Schulte U (2015) Two pentatricopeptide repeat domain proteins are required for the synthesis of respiratory complex I. Curr Genet 61:19–29CrossRefPubMedGoogle Scholar
  40. Tavares-Carreón F, Camacho-Villasana Y, Zamudio-Ochoa A, Shingú-Vázquez M, Torres-Larios A, Pérez-Martínez X (2008) The pentatricopeptide repeats present in Pet309 are necessary for translation but not for stability of the mitochondrial COX1 mRNA in yeast. J Biol Chem 283:1472–1479CrossRefPubMedGoogle Scholar
  41. Tu Y-T, Barrientos A (2015) The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep 10:854–864CrossRefGoogle Scholar
  42. Underbrink-Lyon K, Miller DL, Ross NA, Fukuhara H, Martin NC (1983) Characterization of a yeast mitochondrial locus necessary for tRNA biosynthesis. Deletion mapping and restriction mapping studies. Mol Gen Genet 191:512–518CrossRefPubMedGoogle Scholar
  43. Wilcox M (1969) y-Glutamyl phosphate attached to glutamine-specific tRNA. Eur J Biochem 11:405–412CrossRefPubMedGoogle Scholar
  44. Zeng X, Hourset A, Tzagoloff A (2007) The Saccharomyces cerevisiae ATP22 gene codes for the mitochondrial ATPase subunit 6-specific translation factor. Genetics 175:55–63CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bruno S. Moda
    • 1
  • José Ribamar Ferreira-Júnior
    • 2
  • Mario H. Barros
    • 1
    Email author
  1. 1.Departamento de Microbiologia-Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
  2. 2.Escola de Artes, Ciências e Humanidades-USPSão PauloBrazil

Personalised recommendations