Current Genetics

, Volume 61, Issue 3, pp 479–487 | Cite as

The International Symposium on Fungal Stress: ISFUS

  • Drauzio E. N. Rangel
  • Alene Alder-Rangel
  • Ekaterina Dadachova
  • Roger D. Finlay
  • Jan Dijksterhuis
  • Gilberto U. L. Braga
  • Luis M. Corrochano
  • John E. Hallsworth
Research Article

Abstract

Fungi play central roles in many biological processes, influencing soil fertility, decomposition, cycling of minerals, and organic matter, plant health, and nutrition. They produce a wide spectrum of molecules, which are exploited in a range of industrial processes to manufacture foods, food preservatives, flavoring agents, and other useful biological products. Fungi can also be used as biological control agents of microbial pathogens, nematodes or insect pests, and affect plant growth, stress tolerance, and nutrient acquisition. Successful exploitation of fungi requires better understanding of the mechanisms that fungi use to cope with stress as well as the way in which they mediate stress tolerance in other organisms. It is against this backdrop that a scientific meeting on fungal stress was held in São José dos Campos, Brazil, in October 2014. The meeting, hosted by Drauzio E. N. Rangel and Alene E. Alder-Rangel, and supported by the São Paulo Research Foundation (FAPESP), brought together more than 30 young, mid-career, and highly accomplished scientists from ten different countries. Here we summarize the highlights of the meeting.

Keywords

Astrobiology Biofuels Compatible solutes Entomopathogenic fungi Erythritol and mannitol Acid, alkali, chaotrope, ethanol, heat, hypoxic, osmotic, and salt stress Saccharomyces cerevisiae Trehalose UV-B radiation tolerance 

Supplementary material

294_2015_501_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1554 kb)

References

  1. Agrios GN (1997) Plant Pathology, 4th edn. Academic Press, San DiegoGoogle Scholar
  2. Alder-Rangel A (2015) The adventures of  Dr. Donald W. Roberts: International Insect Pathologist (in press)Google Scholar
  3. Alston DG, Rangel DEN, Lacey LA, Golez HG, Kim JJ, Roberts DW (2005) Evaluation of novel fungal and nematode isolates for control of Conotrachelus nenuphar (Coleoptera: Curculionidae) larvae. Biol Control 35:163–171CrossRefGoogle Scholar
  4. Alves FL, Stevenson A, Baxter E, Gillion JLM, Hejazi F, Hayes S, Morrison IEG, Prior BA, McGenity TJ, Rangel DEN, Magan N, Timmis KN, Hallsworth JE (2015) Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Curr Genet. doi:10.1007/s00294-015-0496-8 Google Scholar
  5. Avalos J, Limón MC (2014) Biological roles of fungal carotenoids Curr Genet doi:10.1007/s00294-014-0454-x
  6. Azevedo RFF, Souza RKF, Braga GUL, Rangel DEN (2014) Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Fungal Biol 118:990–995. doi:10.1016/j.funbio.2014.09.003 PubMedCrossRefGoogle Scholar
  7. Ball P, Hallsworth JE (2015) Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17:8297–8305. doi:10.1039/c4cp04564e PubMedCrossRefGoogle Scholar
  8. Bhaganna P, Volkers RJM, Bell ANW, Kluge K, Timson DJ, McGrath JW, Ruijssenaars HJ, Hallsworth JE (2010) Hydrophobic substances induce water stress in microbial cells. Microb Biotechnol 3:701–716. doi:10.1111/j.1751-7915.2010.00203.x PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530PubMedCrossRefGoogle Scholar
  10. Braga GUL, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001a) Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycol Res 105:874–882CrossRefGoogle Scholar
  11. Braga GUL, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001b) Effects of UV-B irradiance on conidia and germinants of the entomopathogenic hyphomycete Metarhizium anisopliae: a study of reciprocity and recovery. Photochem Photobiol 73:140–146PubMedCrossRefGoogle Scholar
  12. Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001c) Variability in response to UV-B among species and strains of Metarhizium anisopliae isolates from sites at latitudes from 61°N to 54°S. J Invertebr Pathol 78:98–108PubMedCrossRefGoogle Scholar
  13. Braga GUL, Rangel DEN, Flint SD, Anderson AJ, Roberts DW (2006) Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 82:418–422PubMedCrossRefGoogle Scholar
  14. Braga GUL, Rangel DEN, Fernandes EKK, Flint SD, Roberts DW (2015) Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet. doi:10.1007/s00294-015-0483-0 Google Scholar
  15. Brown SM, Campbell LT, Lodge JK (2007) Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol 10:320–325. doi:10.1016/j.mib.2007.05.014 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Brown AJP, Brown GD, Netea MG, Gow NAR (2014) Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22:614–622. doi:10.1016/j.tim.2014.07.001 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cliquet S, Despreaux J, Zeeshan K, Ddl Broise, Ash G (2011) Characterization of aggregates produced by the potential mycoherbistat Plectosporium alismatis in submerged culture: germination UV-radiation tolerance and infectivity. Biocontrol Sci Technol 21:1243–1256. doi:10.1080/09583157.2011.604124 CrossRefGoogle Scholar
  18. Costa LB, Rangel DEN, Morandi MAB, Bettiol W (2013) Effects of UV-B radiation on the antagonistic ability of Clonostachys rosea to Botrytis cinerea on strawberry leaves. Biol Control 65:95–100. doi:10.1016/j.biocontrol.2012.12.007 CrossRefGoogle Scholar
  19. Coutinho C, Bernardes E, Felix D, Panek AD (1988) Trehalose as cryoprotectant for preservation of yeast strains. J Biotechnol 7:23–32. doi:10.1016/0168-1656(88)90032-6 CrossRefGoogle Scholar
  20. Cray JA, Houghton JDR, Cooke LR, Hallsworth JE (2015a) A simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi Biol Control 81:93–100. doi:10.1016/j.biocontrol.2014.11.006 Google Scholar
  21. Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio ECA, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE (2015b) Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms Curr Opin. Biotech 33:228–259. doi:10.1016/j.copbio.2015.02.010 Google Scholar
  22. Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531. doi:10.1016/j.mib.2008.09.013 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Daoust RA, Roberts DW (1982) Virulence of natural and insect-passaged strains of Metarhizium anisopliae to mosquito larvae. J Invertebr Pathol 40:107–117CrossRefGoogle Scholar
  24. Daoust RA, Roberts DW (1983a) Studies on the prolonged storage of Metarhizium anisopliae conidia: effect of growth substrate on conidial survival and virulence against mosquitoes. J Invertebrate Pathol 41:161–170CrossRefGoogle Scholar
  25. Daoust RA, Roberts DW (1983b) Studies on the prolonged storage of Metarhizium anisopliae conidia: effect of temperature and relative humidity on conidial viability and virulence against mosquitoes. J Invertebr Pathol 41:143–150PubMedCrossRefGoogle Scholar
  26. Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120. doi:10.1111/j.1574-6968.2008.01076.x PubMedCrossRefGoogle Scholar
  27. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759. doi:10.1038/nrmicro2637 PubMedCrossRefGoogle Scholar
  28. Eleutherio EC, Araujo PS, Panek AD (1993a) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta 1156:263–266PubMedCrossRefGoogle Scholar
  29. Eleutherio ECA, Araujo PS, Panek AD (1993b) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596. doi:10.1006/cryo.1993.1061 PubMedCrossRefGoogle Scholar
  30. Eleutherio E, Panek AD, de Mesquita JF, Trevisol E, Magalhães R (2014) Revisiting yeast trehalose metabolism. Curr Genet doi:10.1007/s00294-014-0450-1
  31. Ene IV, Brunke S, Brown AJP, Hube B (2014) Metabolism in fungal pathogenesis cold spring harb. Perspect Med doi:10.1101/cshperspect.a019695
  32. Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256CrossRefGoogle Scholar
  33. Fernandes EKK, Rangel DEN, Moraes AM, Bittencourt VR, Roberts DW (2007) Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J Invertebr Pathol 96:237–243PubMedCrossRefGoogle Scholar
  34. Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2008) Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invertebr Pathol 98:69–78PubMedCrossRefGoogle Scholar
  35. Fernandes EKK, Moraes AML, Pacheco RS, Rangel DEN, Miller MP, Bittencourt VREP, Roberts DW (2009) Genetic diversity among Brazilian isolates of Beauveria bassiana: comparisons with non-Brazilian isolates and other Beauveria species. J Appl Microbiol 107:760–774PubMedCrossRefGoogle Scholar
  36. Fernandes EKK, Keyser CA, Chong JP, Rangel DEN, Miller MP, Roberts DW (2010a) Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. J Appl Microbiol 108:115–128PubMedCrossRefGoogle Scholar
  37. Fernandes EKK, Keyser CA, Rangel DEN, Foster RN, Roberts DW (2010b) CTC medium: a novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biol Control 54:197–205. doi:10.1016/j.biocontrol.2010.05.009 CrossRefGoogle Scholar
  38. Fernandes EKK, Angelo IC, Rangel DEN, Bahiense TC, Moraes AM, Roberts DW, Bittencourt VR (2011) An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Vet Parasitol 182:307–318. doi:10.1016/j.vetpar.2011.05.046 PubMedCrossRefGoogle Scholar
  39. Fernandes EKK, Rangel DEN, Braga GUL, Roberts DW (2015) Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Curr GenetGoogle Scholar
  40. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126. doi:10.1093/jxb/ern059 PubMedCrossRefGoogle Scholar
  41. Finlay R, Wallander H, Smits M, Holmstrom S, van Hees P, Lian B, Rosling A (2009) The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23:101–106. doi:10.1016/j.fbr.2010.03.002 CrossRefGoogle Scholar
  42. Fuller K, Loros J, Dunlap J (2014) Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet. doi:10.1007/s00294-014-0451-0
  43. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. doi:10.1099/mic.0.037143-0 PubMedCrossRefGoogle Scholar
  44. Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Annu Rev Microbiol 48:773–800. doi:10.1146/annurev.mi.48.100194.004013 PubMedCrossRefGoogle Scholar
  45. Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442PubMedCentralPubMedGoogle Scholar
  46. Hallsworth JE, Prior BA, Nomura Y, Iwahara M, Timmis KN (2003) Compatible solutes protect against chaotrope (ethanol)-induced, nonosmotic water stress. Appl Environ Microb 69:7032–7034. doi:10.1128/aem.69.12.7032-7034.2003
  47. Herdeiro RS, Pereira MD, Panek AD, Eleutherio ECA (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta Gen Subjects 1760:340–346. doi:10.1016/j.bbagen.2006.01.010 CrossRefGoogle Scholar
  48. Hernández-Oñate MA, Herrera-Estrella A (2015) Damage response involves mechanisms conserved across plants, animals and fungi. Curr Genet. doi:10.1007/s00294-014-0467-5
  49. Hillmann F, Shekhova E, Kniemeyer O (2015) Insights into the cellular responses to hypoxia in filamentous fungi Curr GenetGoogle Scholar
  50. Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet doi:10.1007/s00294-015-0475-0
  51. Huarte-Bonnet C, Juárez MP, Pedrini N (2014) Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons. Curr Genet doi:10.1007/s00294-014-0452-z
  52. Kaijiang L, Roberts DW (1986) The production of destruxins by the entomogenous fungus, Metarhizium anisopliae var. major. J Invertebr Pathol 47:120–122. doi:10.1016/0022-2011(86)90170-9 CrossRefGoogle Scholar
  53. Keyser CA, Fernandes EKK, Rangel DEN, Roberts DW (2014) Heat-induced post-stress growth delay: A biological trait of many Metarhizium isolates reducing biocontrol efficacy? J Invertebr Pathol 120:67–73. doi:10.1016/j.jip.2014.05.008 PubMedCrossRefGoogle Scholar
  54. Li ZZ, Alves SB, Roberts DW, Fan MZ, Delalibera I, Tang J, Lopes RB, Faria M, Rangel DEN (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Tech 20:117–136CrossRefGoogle Scholar
  55. Lovett B, St. Leger R (2014) Stress is the rule rather than the exception for Metarhizium. Curr Genet doi:10.1007/s00294-014-0447-9
  56. Mansure JJC, Panek AD, Crowe LM, Crowe JH (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica Et Biophysica Acta Biomembranes 1191:309–316. doi:10.1016/0005-2736(94)90181-3 CrossRefGoogle Scholar
  57. McCarthy WJ, Granados RR, Sutter GR, Roberts DW (1975) Characterization of entomopox virions of the army cutworm, Euxoa auxiliaris (Lepidoptera: Noctuidae). J Invertebr Pathol 25:215–220. doi:10.1016/0022-2011(75)90071-3 PubMedCrossRefGoogle Scholar
  58. Medina A, Schmidt-Heydt M, Rodríguez A, Parra R, Geisen R, Magan N (2014) Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr Genet doi:10.1007/s00294-014-0455-9
  59. Ortiz CH, Maia JC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD (1983) Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol 153:644–651PubMedCentralPubMedGoogle Scholar
  60. Ortiz-Urquiza A, Keyhani NO (2014) Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet doi:10.1007/s00294-014-0439-9
  61. Panek A (1959) Kinetic study of the formation and the utilization of trehalose by baker’s yeast. C R Hebd Seances Acad Sci 249:333–335PubMedGoogle Scholar
  62. Panek A (1962) Synthesis of trehalose by baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 98:349–355PubMedCrossRefGoogle Scholar
  63. Panek A (1963) Function of trehalose in baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 100:422–425CrossRefGoogle Scholar
  64. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefGoogle Scholar
  65. Rangel DEN (2011) Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microb Biot 27:1281–1296. doi:10.1007/s11274-010-0584-3 CrossRefGoogle Scholar
  66. Rangel DEN, Correia AdCB (2003) Virulencia de Aphanocladium album (Preuss) Gams e Verticillium lecanii (Zimm.) Viégas (Deuteromycotina: Hyphomycetes) para o percevejo-de-renda da seringueira, Leptopharsa heveae (Drake & Poor) (Hemiptera: Tingidae) Ciência e Agrotecnologia Edicao Especial:1636–1642Google Scholar
  67. Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005) Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. J Invertebr Pathol 88:116–125PubMedCrossRefGoogle Scholar
  68. Rangel DEN, Anderson AJ, Roberts DW (2006) Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. J Invertebr Pathol 93:127–134PubMedCrossRefGoogle Scholar
  69. Rangel DEN, Alston DG, Roberts DW (2008a) Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res 112:1355–1361PubMedCrossRefGoogle Scholar
  70. Rangel DEN, Anderson AJ, Roberts DW (2008b) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372PubMedCrossRefGoogle Scholar
  71. Rangel DEN, Dettenmaier SJ, Fernandes EKK, Roberts DW (2010a) Susceptibility of Metarhizium spp. and other entomopathogenic fungi to dodine-based selective media. Biocontrol Sci Tech 20:375–389CrossRefGoogle Scholar
  72. Rangel DEN, Fernandes EKK, Dettenmaier SJ, Roberts DW (2010b) Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. J Basic Microb 50:344–350Google Scholar
  73. Rangel DEN, Fernandes EKK, Braga GUL, Roberts DW (2011) Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiol Lett 315:81–86. doi:10.1111/j.1574-6968.2010.02168.x PubMedCrossRefGoogle Scholar
  74. Rangel DEN, Fernandes EKK, Anderson AJ, Roberts DW (2012) Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance Fungal Biol-Uk 116:438–442Google Scholar
  75. Rangel DEN, Alder-Rangel A, Dadachova E, Finlay RD, Kupiec M, Dijksterhuis J, Braga GUL, Corrochano LM, Hallsworth JE (2015a) Fungal stress biology: a preface to the   Fungal Stress Responses special edition. Curr Genet. doi:10.1007/s00294-015-0500-3 Google Scholar
  76. Rangel DEN, Braga GUL, Fernandes EKK, Keyser CA, Hallsworth JE, Roberts DW (2015b) Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet doi:10.1007/s00294-015-0477-y
  77. Roberts DW (1966) Toxins from the entomogenous fungus Metarrhizium anisopliae I Production in submerged and surface cultures, and in inorganic and organic nitrogen media. J Invertebr Pathol 8:212–221PubMedCrossRefGoogle Scholar
  78. Roberts DW (1969) Toxins from the entomogenous fungus Metarrhizium anisopliae: Isolation of destruxins from submerged cultures. J Invertebr Pathol 14:82–88. doi:10.1016/0022-2011(69)90012-3 CrossRefGoogle Scholar
  79. Roberts DW, St. Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70PubMedCrossRefGoogle Scholar
  80. Roberts DW, LeBrun RA, Semel M (1981) Control of the colorado potato beetle with fungi. In: Casagrande RaJL (ed) Advances in potato pest management. Hutchinson and Ross Publ. Co., Stroudsberg, pp 119–137Google Scholar
  81. Roberts DW, Rangel DEN, Keyser CA, Bignayan HG, Dettenmaier SJ, Fernandes EKK, Miller MP, Evans EW (2007) The mormon cricket, an old threat in modern day western USA: a search for fungal pathogens. J Anhui Agricul Univ 34:141–148Google Scholar
  82. Santi L, Beys da Silva WO, Berger M, Guimaraes JA, Schrank A, Vainstein MH (2010) Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis Toxicon 55:874-880 doi:10.1016/j.toxicon.2009.12.012
  83. Santos MP, Dias LP, Ferreira PC, Pasin LA, Rangel DEN (2011) Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J Invertebr Pathol 108:209–213. doi:10.1016/j.jip.2011.09.001 PubMedCrossRefGoogle Scholar
  84. Santos R, Stevenson A, de Carvalho CCCR, Grant IR, Hallsworth JE (2015) Extraordinary solute-stress tolerance contributes to the environmental tenacity of mycobacteria. Environ Microbiol Rep. doi:10.1111/1758-2229.12306 PubMedGoogle Scholar
  85. Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221. doi:10.1080/10408690490464104 PubMedCrossRefGoogle Scholar
  86. Selbmann L, Zucconi L, Isola D, Onofri S (2014) Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet doi:10.1007/s00294-014-0457-7
  87. Shalaby S, Horwitz BA (2014) Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Curr Genet doi:10.1007/s00294-014-0458-6
  88. Singh SK, Pandey A (2013) Emerging approaches in fermentative production of statins. Appl Biochem Biotechnol 171:927–938. doi:10.1007/s12010-013-0400-2 PubMedCrossRefGoogle Scholar
  89. Solé C, Nadal-Ribelles M, de Nadal E, Posas F (2014) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet doi:10.1007/s00294-014-0453-y
  90. Souza RKF, Azevedo RFF, Lobo AO, Rangel DEN (2014) Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi. Biocontrol Sci Tech 24:448–461. doi:10.1080/09583157.2013.871223 CrossRefGoogle Scholar
  91. St. Leger R, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A 93:6349–6354Google Scholar
  92. St. Leger RJ, Goettel M, Roberts DW, Staples RC (1991) Prepenetration events during infection of host cuticle by Metarhizium anisopliae. J Invertebr Pathol 58:168–179Google Scholar
  93. St. Leger RJ, Joshi L, Roberts D (1998) Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol 64:709–713Google Scholar
  94. St. Leger RJ, Nelson JO, Screen SE (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145:2691–2699Google Scholar
  95. St. Leger RJ (2010) Society for Invertebrate Pathology 2009 Founders’ Lecture Donald W. Roberts-50 Years of leadership in insect pathology. J Invertebr Pathol 105:211–219. doi:10.1016/j.jip.2010.09.021 PubMedCrossRefGoogle Scholar
  96. Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Anton J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a common water-activity limit for the three domains of life? ISME J. doi:10.1038/ismej.2014.219 PubMedCentralPubMedGoogle Scholar
  97. Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30. doi:10.1016/j.jbiotec.2009.05.001 PubMedCrossRefGoogle Scholar
  98. Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: micobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Drauzio E. N. Rangel
    • 1
  • Alene Alder-Rangel
    • 1
  • Ekaterina Dadachova
    • 2
  • Roger D. Finlay
    • 3
  • Jan Dijksterhuis
    • 4
  • Gilberto U. L. Braga
    • 5
  • Luis M. Corrochano
    • 6
  • John E. Hallsworth
    • 7
  1. 1.Instituto de Pesquisa e DesenvolvimentoUniversidade do Vale do ParaíbaSão José dos CamposBrazil
  2. 2.Departments of Radiology and Microbiology and ImmunologyAlbert Einstein College of MedicineBronxUSA
  3. 3.Uppsala BioCenter, Department Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
  4. 4.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands
  5. 5.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  6. 6.Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevilleSpain
  7. 7.Institute for Global Food Security, School of Biological SciencesQueen’s University BelfastBelfastUK

Personalised recommendations