Current Genetics

, Volume 61, Issue 4, pp 579–589 | Cite as

Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid

  • Hiroshi Kikukawa
  • Eiji Sakuradani
  • Masato Nakatani
  • Akinori Ando
  • Tomoyo Okuda
  • Takaiku Sakamoto
  • Misa Ochiai
  • Sakayu Shimizu
  • Jun Ogawa
Research Article

Abstract

To develop an efficient gene-targeting system in Mortierella alpina 1S-4, we identified the ku80 gene encoding the Ku80 protein, which is involved in the nonhomologous end-joining pathway in genomic double-strand break (DSB) repair, and constructed ku80 gene-disrupted strains via single-crossover homologous recombination. The Δku80 strain from M. alpina 1S-4 showed no negative effects on vegetative growth, formation of spores, and fatty acid productivity, and exhibited high sensitivity to methyl methanesulfonate, which causes DSBs. Dihomo-γ-linolenic acid (DGLA)-producing strains were constructed by disruption of the Δ5-desaturase gene, encoding a key enzyme of bioconversion of DGLA to ARA, using the Δku80 strain as a host strain. The significant improvement of gene-targeting efficiency was not observed by disruption of the ku80 gene, but the construction of DGLA-producing strain by disruption of the Δ5-desaturase gene was succeeded using the Δku80 strain as a host strain. This report describes the first study on the identification and disruption of the ku80 gene in zygomycetes and construction of a DGLA-producing transformant using a gene-targeting system in M. alpina 1S-4.

Keywords

Mortierella alpina Ku80 Homologous recombination Gene targeting Δ5-desaturase Dihomo-γ-linolenic acid 

Notes

Acknowledgments

This work was partially supported by Grants-in Aid for Scientific Research of Japan (Numbers 22380051 to E. Sakuradani and 23248014 to J. Ogawa), the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) of Japan, and the Advanced Low Carbon Technology Research and Development Program (ALCA) of Japan.

Supplementary material

294_2015_481_MOESM1_ESM.pptx (161 kb)
Supplementary material 1 (PPTX 161 kb)

References

  1. Ando A, Sakuradani E, Horinaka K, Ogawa J, Shimizu S (2009a) Transformation of an oleaginous zygomycete Mortierella alpina 1S-4 with the carboxin resistance gene conferred by mutation of the iron-sulfur subunit of succinate dehydrogenase. Curr Genet 55:349–356CrossRefPubMedGoogle Scholar
  2. Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S (2009b) Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol 75:5529–5535PubMedCentralCrossRefPubMedGoogle Scholar
  3. Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346CrossRefPubMedGoogle Scholar
  4. Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398CrossRefPubMedGoogle Scholar
  5. da Silva Ferreira ME, Kress MR, Savoldi M, Goldman MH, Härtl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuB KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211PubMedCentralCrossRefPubMedGoogle Scholar
  6. Daley JM, Palmbos PL, Wu DL, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451CrossRefPubMedGoogle Scholar
  7. Haber JE (2000) Partners and pathways: repairing a double-strand break. Trends Genet 16:259–264CrossRefPubMedGoogle Scholar
  8. Hande MP (2004) DNA repair factors and telomere-chromosome integrity in mammalian cells. Cytogenet Genome Res 104:116–122CrossRefPubMedGoogle Scholar
  9. Honda Y, Kobayashi K, Kirimura K (2011) Increases in gene-targeting frequencies due to disruption of kueA as a ku80 homolog in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 75:1594–1596CrossRefPubMedGoogle Scholar
  10. Hopfner KP, Putnam CD, Tainer JA (2002) DNA double-strand break repair from head to tail. Curr Opin Struct Biol 12:115–122CrossRefPubMedGoogle Scholar
  11. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103:14871–14876PubMedCentralCrossRefPubMedGoogle Scholar
  12. Ishidoh K, Kinoshita H, Ihara F, Nihira T (2014) Efficient and versatile transformation systems in entomopathogenic fungus Lecanicillium species. Curr Genet 60:99–108CrossRefPubMedGoogle Scholar
  13. Jareonkitmongkol S, Sakuradani E, Shimizu S (1993) A novel Δ5-desaturase-defective mutant of Mortierella alpina 1S-4 and its dihomo-γ-linolenic acid productivity. Appl Environ Microbiol 59:4300–4304PubMedCentralPubMedGoogle Scholar
  14. Kanaar R, Hoeijmakers JH, van Gent DC (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 8:483–489CrossRefPubMedGoogle Scholar
  15. Kato A, Akamatsu Y, Sakuraba Y, Inoue H (2004) The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Curr Genet 45:37–44CrossRefPubMedGoogle Scholar
  16. Kawashima H, Akimoto K, Fujita T, Naoki H, Konishi K, Shimizu S (1995) Preparation of 13C-labeled polyunsaturated fatty acids by an arachidonic acid-producing fungus Mortierella alpina 1S-4. Anal Biochem 229:317–322CrossRefPubMedGoogle Scholar
  17. Kikukawa H, Sakuradani E, Kishino S, Park S-B, Ando A, Shima J, Ochiai M, Shimizu S, Ogawa J (2013) Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus Mortierella alpina 1S-4 using a yeast expression system. J Biosci Bioeng 116:672–676CrossRefPubMedGoogle Scholar
  18. Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792CrossRefPubMedGoogle Scholar
  19. Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25–29CrossRefGoogle Scholar
  20. Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212–215PubMedCentralCrossRefPubMedGoogle Scholar
  21. Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271CrossRefPubMedGoogle Scholar
  22. Lisby M, Rothstein R (2004) DNA repair: keeping it together. Curr Biol 14:R994–R996CrossRefPubMedGoogle Scholar
  23. Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45:878–889CrossRefPubMedGoogle Scholar
  24. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253PubMedCentralCrossRefPubMedGoogle Scholar
  25. Okuda T, Ando A, Sakuradani E, Kikukawa H, Kamada N, Ochiai M, Shima J, Ogawa J (2014) Selection and characterization of promoters based on genomic approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S-4. Curr Genet 60:183–191CrossRefPubMedGoogle Scholar
  26. Razanamparany V, Bégueret J (1986) Positive screening and transformation of ura5 mutants in the fungus Podospora anserina: characterization of the transformants. Curr Genet 10:811–817CrossRefPubMedGoogle Scholar
  27. Sakuradani E (2010) Advances in the production of various polyunsaturated fatty acids through oleaginous fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74:908–917CrossRefPubMedGoogle Scholar
  28. Sakuradani E, Kobayashi M, Shimizu S (1999a) Δ6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238:445–453CrossRefPubMedGoogle Scholar
  29. Sakuradani E, Kobayashi M, Shimizu S (1999b) Δ9-fatty acid desaturase from arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus. Aspergillus. Eur J Biochem 260:208–216CrossRefPubMedGoogle Scholar
  30. Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66:648–654CrossRefPubMedGoogle Scholar
  31. Sakuradani E, Murata S, Kanamaru H, Shimizu S (2008) Functional analysis of a fatty acid elongase from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 81:497–503CrossRefPubMedGoogle Scholar
  32. Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84:1–10CrossRefPubMedGoogle Scholar
  33. Sakuradani E, Ando A, Shimizu S, Ogawa J (2013) Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng 116:417–422CrossRefPubMedGoogle Scholar
  34. Schiestl RH, Zhu J, Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14:4493–4500PubMedCentralCrossRefPubMedGoogle Scholar
  35. Shibata T, Nishinaka T, Mikawa T, Aihara H, Kurumizaka H, Yokoyama S, Ito Y (2001) Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: a possible advantage of DNA over RNA as genomic material. Proc Natl Acad Sci USA 98:8425–8432PubMedCentralCrossRefPubMedGoogle Scholar
  36. Shiotani H, Tsuge T (1995) Efficient gene targeting in the filamentous fungus Alternaria alternata. Mol Gen Genet 248:142–150CrossRefPubMedGoogle Scholar
  37. Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470CrossRefPubMedGoogle Scholar
  38. Takahashi T, Mizutani O, Shiraishi Y, Yamada O (2011) Development of an efficient gene-targeting system in Aspergillus luchuensis by deletion of the non-homologous end joining system. J Biosci Bioeng 112:529–534CrossRefPubMedGoogle Scholar
  39. Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004a) Cloning and sequencing of the ura3 and ura5 genes, and isolation and characterization of uracil auxotrophs of the fungus Mortierella alpina 1S-4. Biosci Biotechnol Biochem 68:277–285CrossRefPubMedGoogle Scholar
  40. Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004b) Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol 65:419–425CrossRefPubMedGoogle Scholar
  41. Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005a) Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Δ12-desaturase gene expression. Appl Environ Microbiol 71:5124–5128PubMedCentralCrossRefPubMedGoogle Scholar
  42. Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005b) Transformation of oil-producing fungus, Mortierella alpina 1S-4, using Zeocin, and application to arachidonic acid production. J Biosci Bioeng 100:617–622CrossRefPubMedGoogle Scholar
  43. Tani S, Tsuji A, Kunitake E, Sumitani J, Kawaguchi T (2013) Reversible impairment of the ku80 gene by a recyclable marker in Aspergillus aculeatus. AMB Express 3:4PubMedCentralCrossRefPubMedGoogle Scholar
  44. Van Dyck E, Stasiak AZ, Stasiak A, West SC (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398:728–731CrossRefPubMedGoogle Scholar
  45. Watrin L, Lucas S, Purcarea C, Legrain C, Prieur D (1999) Isolation and characterization of pyrimidine auxotrophs, and molecular cloning of the pyrE gene from the hyperthermophilic archaeon Pyrococcus abyssi. Mol Gen Genet 262:378–381CrossRefPubMedGoogle Scholar
  46. Zhang X, Li M, Wei D, Wang X, Chen X, Xing L (2007) Disruption of the fatty acid Δ6-desaturase gene in the oil-producing fungus Mortierella isabellina by homologous recombination. Curr Microbiol 55:128–134CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hiroshi Kikukawa
    • 1
  • Eiji Sakuradani
    • 1
    • 2
  • Masato Nakatani
    • 1
  • Akinori Ando
    • 1
    • 3
  • Tomoyo Okuda
    • 1
  • Takaiku Sakamoto
    • 1
  • Misa Ochiai
    • 4
  • Sakayu Shimizu
    • 1
    • 5
  • Jun Ogawa
    • 1
    • 3
  1. 1.Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Institute of Technology and ScienceTokushima UniversityTokushimaJapan
  3. 3.Research Unit for Physiological ChemistryKyoto UniversityKyotoJapan
  4. 4.Research Institute, Suntory Global Innovation Center Ltd.OsakaJapan
  5. 5.Department of Bioscience and Biotechnology, Faculty of Bioenvironmental ScienceKyoto Gakuen UniversityKameokaJapan

Personalised recommendations