Advertisement

Current Genetics

, Volume 61, Issue 2, pp 127–140 | Cite as

Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus

  • Takashi Suetomi
  • Takaiku Sakamoto
  • Yoshitaka Tokunaga
  • Toru Kameyama
  • Yoichi Honda
  • Hisatoshi Kamitsuji
  • Isamu Kameshita
  • Kousuke Izumitsu
  • Kazumi Suzuki
  • Toshikazu IrieEmail author
Research Article

Abstract

Previously, we suppressed the expression of genes encoding isozymes of lignin peroxidase (LiP) and manganese peroxidase (MnP) using a calmodulin (CaM) inhibitor, W7, in the white-rot fungus Phanerochaete chrysosporium; this suggested that CaM positively regulates their expression. Here, we studied the role of CaM in another white-rot fungus, Pleurotus ostreatus, which produces MnP and versatile peroxidase (VP), but not LiP. W7 upregulated Mn2+-dependent oxidation of guaiacol, suggesting that CaM negatively regulates the production of the enzymes. Suppression of CaM in P. ostreatus using RNAi also led to upregulation of enzyme activity, whereas overexpression of CaM in P. ostreatus caused downregulation. Real-time RT-PCR showed that MnP1-6 and VP3 levels in the CaM-knockdown strain were higher than those in the wild-type strain, while MnP-5 and -6 and VP1 and 2 levels in the CaM-overexpressing strain were lower than in the wild type. Moreover, we also found that another ligninolytic enzyme, laccase, which is not produced by P. chrysosporium, was negatively regulated by CaM in P. ostreatus similar to MnP and VP. Although overexpression of CaM did not reduce the ability of P. ostreatus to digest beech wood powder, the percentage of lignin remaining in the digest was slightly higher than in the wild-type strain digest.

Keywords

Lignin Basidiomycetes Manganese peroxidase Calmodulin 

Notes

Acknowledgments

This work was partially supported by the grant of an FS Stage Project for Advanced Low Carbon Technology Research and the Development Program of the Japan Science and Technology Agency.

References

  1. Ahn I-P, Suh S-C (2007) Calcium/calmodulin-dependent signaling for prepenetration development in Cochliobolus miyabeanus infecting rice. J Gen Plant Pathol 73:113–120CrossRefGoogle Scholar
  2. Ahn I-P, Uhm K-H, Kim S, Lee Y-H (2003) Signaling pathways involved in preinfection development of Colletotrichum gloeosporioides, C. coccodes, and C. dematium pathogenic on red pepper. Physiol Mol Plant Pathol 63:281–289CrossRefGoogle Scholar
  3. Amore A, Honda Y, Faraco V (2012) Copper induction of enhanced green fluorescent protein expression in Pleurotus ostreatus driven by laccase poxa1b promoter. FEMS Microbiol Lett 337:155–163CrossRefPubMedGoogle Scholar
  4. Belinky PA, Flikshtein N, Lechenko S, Gepstein S, Dosoretz CG (2003) Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 69:6500–6506CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bonnarme P, Jeffries TW (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56:210–217PubMedCentralPubMedGoogle Scholar
  6. Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA 89:5586–5590CrossRefPubMedCentralPubMedGoogle Scholar
  7. Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172:3125–3130PubMedCentralPubMedGoogle Scholar
  8. Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827CrossRefPubMedGoogle Scholar
  9. Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzluf GA (eds) Biochemistry and molecular biology (The Mycota). Springer, New York, pp 249–273CrossRefGoogle Scholar
  10. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50PubMedCentralPubMedGoogle Scholar
  11. Davis TN, Urdea MS, Masiarz FR, Thorner J (1986) Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47:423–431CrossRefPubMedGoogle Scholar
  12. Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 33–61Google Scholar
  13. Fernandez-Fueyo E, Castanera R, Ruiz-Dueñas FJ, Lopez-Lucendo MF, Ramirez L, Pisabarro AG, Martinez AT (2014a) Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol 18:003Google Scholar
  14. Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martinez MJ, Romero A, Hammel KE, Medrano FJ, Martinez AT (2014b) Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels 7:2CrossRefPubMedCentralPubMedGoogle Scholar
  15. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719CrossRefPubMedGoogle Scholar
  16. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385CrossRefPubMedGoogle Scholar
  17. Gold MH, Kuwahara M, Chiu AA, Glenn JK (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234:353–362CrossRefPubMedGoogle Scholar
  18. Hatfielda R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839Google Scholar
  19. Heinzkill M, Messner K (1997) The ligninolytic system of fungi. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, London, pp 213–227Google Scholar
  20. Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T (1981) N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci USA 78:4354–4357CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742CrossRefPubMedGoogle Scholar
  22. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897CrossRefPubMedGoogle Scholar
  23. Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37:209–212CrossRefPubMedGoogle Scholar
  24. Irie T, Honda Y, Hirano T, Sato T, Enei H, Watanabe T, Kuwahara M (2001a) Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Appl Microbiol Biotechnol 56:707–709CrossRefPubMedGoogle Scholar
  25. Irie T, Honda Y, Watanabe T, Kuwahara M (2001b) Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA. Appl Microbiol Biotechnol 55:563–565CrossRefPubMedGoogle Scholar
  26. Irie T, Honda Y, Watanabe T, Kuwahara M (2001c) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570CrossRefPubMedGoogle Scholar
  27. Kerem Z, Hadar Y (1993) Effect of manganese on lignin degradation by Pleurotus ostreatus during solid-state fermentation. Appl Environ Microbiol 59:4115–4120PubMedCentralPubMedGoogle Scholar
  28. Kirk TK, Connors WJ, Bleam RD, Hackett WF, Zeikus JG (1975) Preparation and microbial decomposition of synthetic C14 ligins. Proc Natl Acad Sci USA 72:2515–2519CrossRefPubMedCentralPubMedGoogle Scholar
  29. Kobayashi I, Yamada M, Kobayashi Y (2007) Calcium ion promotes successful penetration of powdery mildew fungi into barley cells. J Gen Plant Pathol 73:399–404CrossRefGoogle Scholar
  30. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250CrossRefGoogle Scholar
  31. Li D, AIic M, Brown JA, Gold MH (1995) Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol 61:341–345PubMedCentralPubMedGoogle Scholar
  32. MacDonald MJ, Paterson A, Broda P (1984) Possible relationship between cyclic AMP and idiophasic metabolism in the white rot fungus Phanerochaete chrysosporium. J Bacteriol 160:470–472PubMedCentralPubMedGoogle Scholar
  33. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700CrossRefPubMedGoogle Scholar
  34. Minami M, Kureha O, Mori M, Kamitsuji H, Suzuki K, Irie T (2007) Long serial analysis of gene expression for transcriptome profiling during the initiation of ligninolytic enzymes production in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 75:609–618CrossRefPubMedGoogle Scholar
  35. Minami M, Suzuki K, Shimizu A, Hongo T, Sakamoto T, Ohyama N, Kitaura H, Kusaka A, Iwama K, Irie T (2009) Changes in the gene expression of the white rot fungus Phanerochaete chrysosporium due to the addition of a tropine. Biosci Biotechnol Biochem 73:1722–1731CrossRefPubMedGoogle Scholar
  36. Morales M, Mate MJ, Romero A, Martinez MJ, Martinez AT, Ruiz-Dueñas FJ (2012) Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem 287:41053–41067CrossRefPubMedCentralPubMedGoogle Scholar
  37. Osawa M, Swindells MB, Tanikawa J, Tanaka T, Mase T, Furuya T, Ikura M (1998) Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. J Mol Biol 276:165–176CrossRefPubMedGoogle Scholar
  38. Palmieri G, Giardina P, Marzullo L, Desiderio B, Nitti G, Cannio R, Sannia G (1993) Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 39:632–636CrossRefPubMedGoogle Scholar
  39. Paszczynski A, Pasti-Grigsby MB, Goszczynski S, Crawford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604PubMedCentralPubMedGoogle Scholar
  40. Pezzella C, Autore F, Giardina P, Piscitelli A, Sannia G, Faraco V (2009) The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 55:45–57CrossRefPubMedGoogle Scholar
  41. Pezzella C, Lettera V, Piscitelli A, Giardina P, Sannia G (2013) Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 97:705–717CrossRefPubMedGoogle Scholar
  42. Ruiz-Dueñas FJ, Morales M, Perez-Boada M, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2007) Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry 46:66–77CrossRefPubMedGoogle Scholar
  43. Ruiz-Dueñas FJ, Fernández E, Martínez MJ, Martínez AT (2011) Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure. C R Biol 334:795–805CrossRefPubMedGoogle Scholar
  44. Sakamoto T, Kitaura H, Minami M, Honda Y, Watanabe T, Ueda A, Suzuki K, Irie T (2010) Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium. Curr Genet 56:401–410CrossRefPubMedGoogle Scholar
  45. Sakamoto T, Yao Y, Hida Y, Honda Y, Watanabe T, Hashigaya W, Suzuki K, Irie T (2012) A calmodulin inhibitor, W-7 influences the effect of cyclic adenosine 3′, 5′-monophosphate signaling on ligninolytic enzyme gene expression in Phanerochaete chrysosporium. AMB Express 2:7CrossRefPubMedCentralPubMedGoogle Scholar
  46. Sakamoto T, Honda Y, Kameshita I, Suzuki K, Irie T (2013) Isolation and heterologous expression of the Phanerochaete chrysosporium calmodulin gene. Mycoscience 54:241–246CrossRefGoogle Scholar
  47. Salame TM, Yarden O, Hadar Y (2010) Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microb Biotechnol 3:93–106CrossRefPubMedCentralPubMedGoogle Scholar
  48. Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012) Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol 78:5341–5352CrossRefPubMedCentralPubMedGoogle Scholar
  49. Salame TM, Knop D, Levinson D, Yarden O, Hadar Y (2013) Redundancy among manganese peroxidases in Pleurotus ostreatus. Appl Environ Microbiol 79:2405–2415CrossRefPubMedCentralPubMedGoogle Scholar
  50. Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y (2014) Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Environ Microbiol 16:225–277CrossRefGoogle Scholar
  51. Sato T, Ueno Y, Watanabe T, Mikami T, Matsumoto T (2004) Role of Ca2+/calmodulin signaling pathway on morphological development of Candida albicans. Biol Pharm Bull 27:1281–1284CrossRefPubMedGoogle Scholar
  52. Singh D, Zeng J, Chen S (2011) Increasing manganese peroxidase productivity of Phanerochaete chrysosporium by optimizing carbon sources and supplementing small molecules. Lett Appl Microbiol 53:120–123CrossRefPubMedGoogle Scholar
  53. Wang G, Lu L, Zhang CY, Singapuri A, Yuan S (2006) Calmodulin concentrates at the apex of growing hyphae and localizes to the Spitzenkörper in Aspergillus nidulans. Protoplasma 228:159–166CrossRefPubMedGoogle Scholar
  54. Yao Y, Sakamoto T, Honda Y, Kagotani Y, Izumitsu K, Suzuki K, Irie T (2013) The white-rot fungus Pleurotus ostreatus transformant overproduced intracellular cAMP and laccase. Biosci Biotechnol Biochem 77:2309–2311CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Takashi Suetomi
    • 1
  • Takaiku Sakamoto
    • 1
  • Yoshitaka Tokunaga
    • 1
  • Toru Kameyama
    • 1
  • Yoichi Honda
    • 2
  • Hisatoshi Kamitsuji
    • 3
  • Isamu Kameshita
    • 4
  • Kousuke Izumitsu
    • 1
  • Kazumi Suzuki
    • 1
  • Toshikazu Irie
    • 1
    Email author
  1. 1.School of Environmental ScienceUniversity of Shiga PrefectureHikone CityJapan
  2. 2.Graduate School of AgricultureKyoto UniversityKyotoJapan
  3. 3.Gifu Prefectural Research Institute for ForestsMinoJapan
  4. 4.Faculty of AgricultureKagawa UniversityKagawaJapan

Personalised recommendations