Current Genetics

, Volume 61, Issue 1, pp 87–102 | Cite as

The intraspecific variability of mitochondrial genes of Agaricus bisporus reveals an extensive group I intron mobility combined with low nucleotide substitution rates

  • Banafsheh Jalalzadeh
  • Idy Carras Saré
  • Cyril Férandon
  • Philippe Callac
  • Mohammad Farsi
  • Jean-Michel Savoie
  • Gérard Barroso
Research Article


Intraspecific mitochondrial variability was studied in ten strains of A. bisporus var. bisporus, in a strain representative of A. bisporus var. eurotetrasporus and in a strain of the closely related species Agaricus devoniensis. In A. bisporus, the cox1 gene is the richest in group I introns harboring homing endonuclease genes (heg). This study led to identify group I introns as the main source of cox1 gene polymorphism. Among the studied introns, two groups were distinguished according to the heg they contained. One group harbored heg maintained putatively functional. The other group was composed of eroded heg sequences that appeared to evolve toward their elimination. Low nucleotide substitution rates were found in both types of intronic sequences. This feature was also shared by all types of studied mitochondrial sequences, not only intronic but also genic and intergenic ones, when compared with nuclear sequences. Hence, the intraspecific evolution of A. bisporus mitochondrial genome appears characterized by both an important mobility (presence/absence) of large group I introns and by low nt substitution rates. This stringent conservation of mitochondrial sequences, when compared with their nuclear counterparts, appears irrespective of their apparent functionality and contrasts to what is widely accepted in fungal sequence evolution. This strengthens the usefulness of mtDNA sequences to get clues on intraspecific evolution.


Basidiomycota cox1 gene heg Mobile ORF SNP (single-nucleotide polymorphism) 



The authors thank the cultural service of French Embassy in Iran for the attribution of a research grant to Banafsheh Jalalzadeh. The authors also thank the French embassy in Senegal for the research grant U3E to Idy Carras Saré and the “Ministère de la recherche scientifique du Sénégal” as part of a “Program FIRST”.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the countries, in which they were performed.

Supplementary material

294_2014_448_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)
294_2014_448_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)
294_2014_448_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 20 kb)
294_2014_448_MOESM4_ESM.docx (17 kb)
Supplementary material 4 (DOCX 16 kb)
294_2014_448_MOESM5_ESM.docx (20 kb)
Supplementary material 5 (DOCX 19 kb)
294_2014_448_MOESM6_ESM.docx (18 kb)
Supplementary material 6 (DOCX 18 kb)
294_2014_448_MOESM7_ESM.docx (22 kb)
Supplementary material 7 (DOCX 21 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment searchtool. J Mol Biol 215(3):403–410PubMedCrossRefGoogle Scholar
  2. Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidance for genetic exchanges among ribosomal genes on non-homologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7327PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barroso G, Labarere J (1997) Genetic evidence for nonrandom sorting out of mitochondria in the basidiomycete Agrocybe aegerita. Appl Environ Microbiol 63(12):4686–4691PubMedCentralPubMedGoogle Scholar
  4. Barroso G, Blesa S, Labarere J (1995) Wide distribution of mitochondrial genome rearrangements in wild strains of the cultivated Basidiomycete Agrocybe aegerita. Appl Environ Microbiol 61:1187–1193PubMedCentralPubMedGoogle Scholar
  5. Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19(12):709–716PubMedCrossRefGoogle Scholar
  6. Callac P, Jacobé de Haut I, Imbernon M, Guinberteau J (2003) A novel homothallic variety of Agaricus bisporus comprises rare tetrasporic isolates from Europe. Mycologia 95(2):222–231PubMedCrossRefGoogle Scholar
  7. Challen MP, Kerrigan RW, Callac P (2003) A phylogenetic reconstruction and emendation of Agaricus section Duploannulatae. Mycologia 95(1):61–73PubMedCrossRefGoogle Scholar
  8. Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29(18):3757–3774PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439CrossRefGoogle Scholar
  10. Cummings DJ, Mc Nally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17(5):375–402PubMedCrossRefGoogle Scholar
  11. Damberger SH, Gutell RR (1994) A comparative database of group I intron structures. Nucleic Acids Res 22(17):3508–3510PubMedCentralPubMedCrossRefGoogle Scholar
  12. De la Bastide PY, Horgen PA (2003) Mitochondrial inheritance and the detection of non-parental mitochondrial DNA haplotypes in crosses of Agaricus bisporus homokaryons. Fungal Genet Biol 38(3):333–342PubMedCrossRefGoogle Scholar
  13. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8PubMedCentralPubMedCrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. Ferandon C, Moukha S, Callac P, Benedetto JP, Castroviejo M, Barroso G (2010) The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group 1 introns. PLoS One 5(11):e14048PubMedCentralPubMedCrossRefGoogle Scholar
  17. Ferandon C, Xu JP, Barroso G (2013) The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences. Fungal Genet Biol 55:85–91PubMedCrossRefGoogle Scholar
  18. Foulongne-Oriol M, Spataro C, Cathalot V, Monllor S, Savoie J-M (2010) An expended genetic linkage map of an intervarietal Agaricus bisporus var. bisporus X A. bisporus var. burnettii hybrid based on AFLP, SSR and CAPS markers shed light on the recombination behaviour of the species. Fungal Genet Biol 47:226–236PubMedCrossRefGoogle Scholar
  19. Fuertes Aguilar J, Rossello JA, Nieto Feliner G (1999) Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol Ecol 8:1341–1346PubMedCrossRefGoogle Scholar
  20. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695PubMedCrossRefGoogle Scholar
  21. Ghikas DM, Kouvelis VN, Typas MA (2010) Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol 10:174PubMedCentralPubMedCrossRefGoogle Scholar
  22. Gimble FS (2000) Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol Lett 185:99–107PubMedCrossRefGoogle Scholar
  23. Gogarten JP, Hilario E (2006) Inteins, introns and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6:94PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gray MW (2014) The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria. Cold Spring Harb Perspect Biol 6:3CrossRefGoogle Scholar
  25. Gray MW, Burger G, Lang F (1999) Mitochondrial evolution. Science 283:1476–1481PubMedCrossRefGoogle Scholar
  26. Hellberg M (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24PubMedCentralPubMedCrossRefGoogle Scholar
  27. Imbernon M, Callac P, Gasqui P, Kerrigan RW, AJ Velcko Jr (1996) BSN, the primary determinant of basidial spore number and reproductive mode in Agaricus bisporus, maps to chromosome I. Mycologia 88:749–761CrossRefGoogle Scholar
  28. Kerrigan RW, Callac P, Parra LA (2008) New and rare taxa in Agaricus section Bivelares (Duploannulati). Mycologia 100:876–892PubMedCrossRefGoogle Scholar
  29. Kolodziej PA, Woychik N, Liao SM, Young RA (1990) RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol 10(5):1915–1920PubMedCentralPubMedGoogle Scholar
  30. Liu K, Muse SV (2005) PowerMaker: an integrated analysis environment for genetic maker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  31. Losada L, Pakala SB, Federova N, Joardar V, Shabalina SA et al (2014) Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3. FEMS Microbiol Lett 352(2):165–173PubMedCrossRefGoogle Scholar
  32. Lynch M, Koshela B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730PubMedCrossRefGoogle Scholar
  33. Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216(3):585–610PubMedCrossRefGoogle Scholar
  34. Morin E et al (2012) The genome sequence of the button Mushroom Agaricus bisporus reveals mechanism governing adaptation to a humic -rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506PubMedCentralPubMedCrossRefGoogle Scholar
  35. O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJN, Lysøe E, Rehner SA, Aoki T, Robert VARG, Crous PW, Groenewald JZ, Kang S, Geiser DM (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31PubMedCrossRefGoogle Scholar
  36. O’Brien EA, Zhang Y, Wang E, Marie V, Badejoko W, Lang BF, Burger G (2009) GOBASE—an organelle genome database. Nucleic Acids Res 37:D946–D950PubMedCentralPubMedCrossRefGoogle Scholar
  37. Palmer JD, Adams KL, Cho Y, Parkinson CL, Qui Y-L, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97:6960–6966PubMedCentralPubMedCrossRefGoogle Scholar
  38. Pellenz S, Harington A, Dujon B, Wolf K, Schafer B (2002) Characterization of the I-Spom I endonuclease from fission yeast: insights into the evolution of a group I intron- encoded homing endonuclease. J Mol Evol 55(3):302–313PubMedCrossRefGoogle Scholar
  39. Raper CA, Raper JR, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64(5):1088–1117CrossRefGoogle Scholar
  40. Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473PubMedCrossRefGoogle Scholar
  41. Robison MM, Royer JC, Horgen PA (1991) Homology between mitochondrial DNA of Agaricus bisporus and an internal portion of a linear mitochondrial plasmid of Agaricus bitorquis. Curr Genet 19:495–502PubMedCrossRefGoogle Scholar
  42. Robison M, Chiang B, Horgen P (2001) A phylogeny of the genus Agaricus based on mitochondrial atp6 sequences. Mycologia 93(1):30–37CrossRefGoogle Scholar
  43. Salavirta H, Oksanen I, Kuuskeri J, Makela M, Laine P, Paulin L, Lundell T (2014) Mitochondrial genome of Phlebia radiata is the second largest (156 kbp) among fungi and features signs of genome flexibility and recent recombination events. PLoS One 9(5):e97141PubMedCentralPubMedCrossRefGoogle Scholar
  44. Saldanha R, Mohr G, Belfort M, Lambowitz AM (1993) Group I and group II introns. FASEB J 7(1):15–24PubMedGoogle Scholar
  45. Schoch CL et al (2009) The Ascomycota tree of life: a phylum wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239PubMedCrossRefGoogle Scholar
  46. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Barcoding Fungal (2012) Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109(16):6241–6246PubMedCentralPubMedCrossRefGoogle Scholar
  47. Specht CA, Novotny CP, Ullrich RC (1992) Mitochondrial DNA of Schizophyllum commune: restriction map, genetic map, and mode of inheritance. Curr Genet 22(2):129–134PubMedCrossRefGoogle Scholar
  48. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acides Res 22:4673–4680CrossRefGoogle Scholar
  49. Torriani SFF, Penselin D, Knogge W, Felder M, Taudien S, Platzer M, McDonald BA, Brunner PC (2014) Comparartive analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genet Biol 62:34–42PubMedCrossRefGoogle Scholar
  50. Ward BL (1981) The mitochondrial genome is large and variable in a family of plants (cucurbitaceae). Cell 25:793–803PubMedCrossRefGoogle Scholar
  51. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic press, San Diego, p 315–322CrossRefGoogle Scholar
  52. Xu JP, Kerrigan RW, Callac P, Horgen PA, Anderson JB (1997) Genetic structure of natural populations of Agaricus bisporus, the commercial Button Mushroom. J. Heredity 88:482–488CrossRefGoogle Scholar
  53. Xu JP, Kerrigan RW, Sonnenberg AS, Callac P, Horgen PA, Anderson JB (1998) Mitochondrial DNA variation in natural populations of the mushroom Agaricus bisporus. Mol Ecol 7:19–33CrossRefGoogle Scholar
  54. Xu JP, Demerger C, Callac P (2002) Fine-scale genetic analysis reveals unexpected spatial-temporal heterogeneity in two natural populations of the commercial mushroom Agaricus bisporus. Microbiology 148:1253–1262PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Banafsheh Jalalzadeh
    • 1
    • 2
  • Idy Carras Saré
    • 3
  • Cyril Férandon
    • 1
  • Philippe Callac
    • 1
  • Mohammad Farsi
    • 4
  • Jean-Michel Savoie
    • 1
  • Gérard Barroso
    • 1
    • 5
  1. 1.INRA, UR1264 MycSA, CS20032Villenave d’Ornon CedexFrance
  2. 2.Academic Center for Education, Culture and Research (ACECR)MashhadIran
  3. 3.Laboratoire de Biotechnologies des Champignons (LBC), Département de Biologie Végétale, Faculté des Sciences et TechniquesUniversité Cheikh Anta Diop (UCAD)DakarSenegal
  4. 4.Ferdowsi University of MashhadMashhadIran
  5. 5.Université de BordeauxBordeaux CedexFrance

Personalised recommendations