Advertisement

Current Genetics

, Volume 61, Issue 1, pp 73–86 | Cite as

Overexpression of Pa_1_10620 encoding a mitochondrial Podospora anserina protein with homology to superoxide dismutases and ribosomal proteins leads to lifespan extension

  • Carolin Grimm
  • Lena Böhl
  • Heinz D. OsiewaczEmail author
Research Article

Abstract

In biological systems, reactive oxygen species (ROS) represent ‘double edged swords’: as signaling molecules they are essential for proper development, as reactive agents they cause molecular damage and adverse effects like degeneration and aging. A well-coordinated control of ROS is therefore of key importance. Superoxide dismutases (SODs) are enzymes active in the detoxification of superoxide. The number of isoforms of these proteins varies among species. Here we report the characterization of the putative protein encoded by Pa_1_10620 that has been previously annotated to code for a mitochondrial ribosomal protein but shares also sequence domains with SODs. We report that the gene is transcribed in P. anserina cultures of all ages and that the encoded protein localizes to mitochondria. In strains overexpressing Pa_1_10620 in a genetic background in which PaSod3, the mitochondrial MnSOD of P. anserina, is deleted, no SOD activity could be identified in isolated mitochondria. However, overexpression of the gene leads to lifespan extension suggesting a pro-survival function of the protein in P. anserina.

Keywords

Superoxide dismutase MnSOD Podospora anserina Aging Mitochondrial ribosomes 

Notes

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (Bonn, Germany) for generous support of this study to HDO (Os75/13-1).

References

  1. Averbeck NB, Borghouts C, Hamann A, Specke V, Osiewacz HD (2001) Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina. Mol Gen Genet 264:604–612PubMedCrossRefGoogle Scholar
  2. Bermingham-McDonogh O, Gralla EB, Valentine JS (1988) The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci USA 85:4789–4793PubMedCentralPubMedCrossRefGoogle Scholar
  3. Borghouts C, Kimpel E, Osiewacz HD (1997) Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci USA 94:10768–10773PubMedCentralPubMedCrossRefGoogle Scholar
  4. Borghouts C, Werner A, Elthon T, Osiewacz HD (2001) Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol Cell Biol 21:390–399PubMedCentralPubMedCrossRefGoogle Scholar
  5. Borghouts C, Scheckhuber CQ, Stephan O, Osiewacz HD (2002a) Copper homeostasis and aging in the fungal model system Podospora anserina: differential expression of PaCtr3 encoding a copper transporter. Int J Biochem Cell Biol 34:1355–1371PubMedCrossRefGoogle Scholar
  6. Borghouts C, Scheckhuber CQ, Werner A, Osiewacz HD (2002b) Respiration, copper availability and SOD activity in P. anserina strains with different lifespan. Biogerontology 3:143–153PubMedCrossRefGoogle Scholar
  7. Borgstahl GE, Parge HE, Hickey MJ, Beyer WF Jr, Hallewell RA, Tainer JA (1992) The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 71:107–118PubMedCrossRefGoogle Scholar
  8. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716PubMedCentralPubMedGoogle Scholar
  9. Brust D, Daum B, Breunig C, Hamann A, Kühlbrandt W, Osiewacz HD (2010) Cyclophilin D links programmed cell death and organismal aging in Podospora anserina. Aging Cell 9:761–775PubMedCrossRefGoogle Scholar
  10. Cejkova J, Labsky J, Vacik J (1998) Reactive oxygen species (ROS) generated by xanthine oxidase in the corneal epithelium and their potential participation in the damage of the corneal epithelium after prolonged use of contact lenses in rabbits. Acta Histochem 100:171–184PubMedCrossRefGoogle Scholar
  11. Chaveroche MK, Ghigo JM, d’Enfert C (2000) A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28:E97PubMedCentralPubMedCrossRefGoogle Scholar
  12. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786PubMedCrossRefGoogle Scholar
  13. Cross AR, Parkinson JF, Jones OT (1984) The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations. Biochem J 223:337–344PubMedCentralPubMedGoogle Scholar
  14. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171:239–250PubMedCrossRefGoogle Scholar
  16. Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402PubMedCrossRefGoogle Scholar
  17. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469PubMedCentralPubMedCrossRefGoogle Scholar
  18. Esser K (1974) Podospora anserina. In: King RC (ed) Handbook of Genetics. Plenum Press, New YorkGoogle Scholar
  19. Fischer F, Hamann A, Osiewacz HD (2012) Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 37:284–292PubMedCrossRefGoogle Scholar
  20. Fischer F, Weil A, Hamann A, Osiewacz HD (2013) Human CLPP reverts the longevity phenotype of a fungal ClpP deletion strain. Nat Commun 4:1397PubMedCentralPubMedCrossRefGoogle Scholar
  21. Flohe L, Ötting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104PubMedCrossRefGoogle Scholar
  22. Fujii M, Ishii N, Joguchi A, Yasuda K, Ayusawa D (1998) A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA Res 5:25–30PubMedCrossRefGoogle Scholar
  23. Gredilla R, Grief J, Osiewacz HD (2006) Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp Gerontol 41:439–447PubMedCrossRefGoogle Scholar
  24. Hamann A, Krause K, Werner A, Osiewacz HD (2005) A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina. Curr Genet 48:270–275PubMedCrossRefGoogle Scholar
  25. Hamann A, Brust D, Osiewacz HD (2007) Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol Microbiol 65:948–958PubMedCrossRefGoogle Scholar
  26. Harman D (1956) A theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  27. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  28. Heeren G, Rinnerthaler M, Laun P, von SP, Kossler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schüller C, Carmona-Gutierrez D, Breitenbach-Koller L, Mück C, Jansen-Dürr P, Criollo A, Kroemer G, Madeo F, Breitenbach M (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging 1:622–636PubMedCentralPubMedGoogle Scholar
  29. Hipkiss AR (2003) Errors, mitochondrial dysfunction and ageing. Biogerontology 4:397–400PubMedCrossRefGoogle Scholar
  30. Holbrook MA, Menninger JR (2002) Erythromycin slows aging of Saccharomyces cerevisiae. J Gerontol A Biol Sci Med Sci 57:B29–B36PubMedCrossRefGoogle Scholar
  31. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457PubMedCrossRefGoogle Scholar
  32. Hunter T, Bannister WH, Hunter GJ (1997) Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J Biol Chem 272:28652–28659PubMedCrossRefGoogle Scholar
  33. Jensen LT, Culotta VC (2005) Activation of Cu/Zn superoxide dismutases from C. elegans does not require the copper chaperone CCS. J Biol Chem 280:M509142200Google Scholar
  34. Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD (2014) Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 10:822–834PubMedCrossRefGoogle Scholar
  35. Kunstmann B, Osiewacz HD (2008) Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 7:651–662PubMedCrossRefGoogle Scholar
  36. Lambou K, Lamarre C, Beau R, Dufour N, Latge JP (2010) Functional analysis of the superoxide dismutase family in Aspergillus fumigatus. Mol Microbiol 75:910–923PubMedCrossRefGoogle Scholar
  37. Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:8905–8909PubMedCentralPubMedCrossRefGoogle Scholar
  38. Luce K, Osiewacz HD (2009) Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11:852–858PubMedCrossRefGoogle Scholar
  39. Márquez-Fernández O, Trigos A, Ramos-Balderas JL, Viniegra-González G, Deising HB, Aguirre J (2007) Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. Eukaryot Cell 6:710–720PubMedCentralPubMedCrossRefGoogle Scholar
  40. Osiewacz HD (1994) A versatile shuttle cosmid vector for the efficient construction of genomic libraries and for the cloning of fungal genes. Curr Genet 26:87–90PubMedCrossRefGoogle Scholar
  41. Osiewacz HD (2002a) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 28:1–18CrossRefGoogle Scholar
  42. Osiewacz HD (2002b) Mitochondrial functions and aging. Gene 286:65–71PubMedCrossRefGoogle Scholar
  43. Osiewacz HD, Bernhardt D (2013) Mitochondrial quality control: impact on aging and life span—a mini-review. Gerontology 59:413–420PubMedCrossRefGoogle Scholar
  44. Osiewacz HD, Kimpel E (1999) Mitochondrial-nuclear interactions and lifespan control in fungi. Exp Gerontol 34:901–909PubMedCrossRefGoogle Scholar
  45. Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K (1989) Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (plDNA) in a long-lived mutant of Podospora anserina. Mutat Res 219:9–15PubMedCrossRefGoogle Scholar
  46. Osiewacz HD, Skaletz A, Esser K (1991) Integrative transformation of the ascomycete Podospora anserina: identification of the mating-type locus on chromosome VII of electrophoretically separated chromosomes. Appl Microbiol Biotechnol 35:38–45PubMedGoogle Scholar
  47. Osiewacz HD, Hamann A, Zintel S (2013) Assessing organismal aging in the filamentous fungus Podospora anserina. Methods Mol Biol 965:439–462PubMedCrossRefGoogle Scholar
  48. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCentralPubMedCrossRefGoogle Scholar
  49. Philipp O, Hamann A, Servos J, Werner A, Koch I, Osiewacz HD (2013) A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina. PLoS One 8:e83109PubMedCentralPubMedCrossRefGoogle Scholar
  50. Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61PubMedGoogle Scholar
  51. Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, Subramanian G (2007) Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genom 8:435CrossRefGoogle Scholar
  52. Ravindranath SD, Fridovich I (1975) Isolation and characterization of a manganese-containing superoxide dismutase from yeast. J Biol Chem 250:6107–6112PubMedGoogle Scholar
  53. Rizet G (1953) Impossibility of obtaining uninterrupted and unlimited multiplication of the ascomycete Podospora anserina. C R Hebd Seances Acad Sci 237:838–840PubMedGoogle Scholar
  54. Saveanu C, Fromont-Racine M, Harington A, Ricard F, Namane A, Jacquier A (2001) Identification of 12 new yeast mitochondrial ribosomal proteins including 6 that have no prokaryotic homologues. J Biol Chem 276:15861–15867PubMedCrossRefGoogle Scholar
  55. Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105PubMedCrossRefGoogle Scholar
  56. Stahl U, Tudzynski P, Kück U, Esser K (1979) Plasmid-like DNA in senescent cultures of the ascomycetous fungus Podospora anserina. Z Physiol Chem 360:1045Google Scholar
  57. Stumpferl SW, Stephan O, Osiewacz HD (2004) Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot Cell 3:200–211PubMedCentralPubMedCrossRefGoogle Scholar
  58. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314PubMedCentralPubMedCrossRefGoogle Scholar
  59. Unlu ES, Koc A (2007) Effects of deleting mitochondrial antioxidant genes on life span. Ann N Y Acad Sci 1100:505–509PubMedCrossRefGoogle Scholar
  60. Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5:e1000361PubMedCentralPubMedCrossRefGoogle Scholar
  61. Wiemer M, Osiewacz HD (2014) Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina. Microbial Cell 1:225–240CrossRefGoogle Scholar
  62. Zhang Y, Smith BJ, Oberley LW (2006) Enzymatic activity is necessary for the tumor-suppressive effects of MnSOD. Antioxid Redox Signal 8:1283–1293PubMedCrossRefGoogle Scholar
  63. Zintel S, Schwitalla D, Luce K, Hamann A, Osiewacz HD (2010) Increasing mitochondrial superoxide dismutase abundance leads to impairments in protein quality control and ROS scavenging systems and to lifespan shortening. Exp Gerontol 45:525–532PubMedCrossRefGoogle Scholar
  64. Zintel S, Bernhardt D, Rogowska-Wrzesinska A, Osiewacz HD (2011) PaCATB, a secreted catalase protecting Podospora anserina against exogenous oxidative stress. Aging (Albany NY) 3:768–781Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty for Biosciences and Cluster of Excellence Frankfurt ‘Macromolecular Complexes’, Institute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurtGermany

Personalised recommendations