Current Genetics

, Volume 60, Issue 4, pp 343–350 | Cite as

A modular plasmid system for protein co-localization and bimolecular fluorescence complementation in filamentous fungi

  • Mario Lange
  • Ely Oliveira-Garcia
  • Holger B. Deising
  • Edgar Peiter
Technical Notes


To elucidate the function of a protein, it is crucial to know its subcellular location and its interaction partners. Common approaches to resolve those questions rely on the genetic tagging of the gene-of-interest (GOI) with fluorescent reporters. To determine the location of a tagged protein, it may be co-localized with tagged marker proteins. The interaction of two proteins under investigation is often analysed by tagging both with the C- and N-terminal halves of a fluorescent protein. In fungi, the tagged GOI are commonly introduced by serial transformation with plasmids harbouring a single tagged GOI and subsequent selection of suitable strains. In this study, a plasmid system is presented that allows the tagging of several GOI on a single plasmid. This novel double tagging plasmid system (DTPS) allows a much faster and less laborious generation of double-labelled fungal strains when compared with conventional approaches. The DTPS also enables the combination of as many tagged GOI as desired and a simple exchange of existing tags. Furthermore, new tags can be introduced smoothly into the system. In conclusion, the DTPS allows an efficient tagging of GOI with a high degree of flexibility and therefore accelerates functional analysis of proteins in vivo.


BiFC Bimolecular fluorescence complementation Co-localization Colletotrichum graminicola Plasmid Protein localization 



We thank Liane Freitag and Carolin Müller for their excellent technical assistance. Funding for this study was provided by a Grant from the Deutsche Forschungsgemeinschaft (DFG PE1500/2-1) within the Research Unit FOR 666 (project A3) and by the Land Sachsen-Anhalt.

Supplementary material

294_2014_429_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2242 kb)


  1. Baubet V, Mouellic HL, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97:7260–7265PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bowman BJ, Draskovic M, Freitag M, Bowman EJ (2009) Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell 8:1845–1855PubMedCrossRefPubMedCentralGoogle Scholar
  3. Castillo MB, Celio MR, Andressen C, Gotzos V, Rülicke T, Berger MC, Weber J, Berchtold MW (1995) Production and analysis of transgenic mice with ectopic expression of parvalbumin. Arch Biochem Biophys 317:292–298PubMedCrossRefGoogle Scholar
  4. Demaegd D, Foulquier F, Colinet A-S, Gremillon L, Legrand D, Mariot P, Peiter E, van Schaftingen E, Matthijs G, Morsomme P (2013) A newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proc Natl Acad Sci USA 110:6859–6864PubMedCrossRefPubMedCentralGoogle Scholar
  5. Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290PubMedCrossRefPubMedCentralGoogle Scholar
  6. Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396PubMedCrossRefGoogle Scholar
  7. Forgey WM, Blanco M, Loegering WQ (1978) Differences in pathological capabilities and host specificity of Colletotrichum graminicola on Zea mays. Plant Dis Rep 62:573–575Google Scholar
  8. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59PubMedCrossRefGoogle Scholar
  9. Hoff B, Kück U (2005) Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet 47:132–138PubMedCrossRefGoogle Scholar
  10. Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U (2013) Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell 12:299–310PubMedCrossRefPubMedCentralGoogle Scholar
  11. Lange M, Müller C, Peiter E (2014) Membrane-assisted culture of fungal mycelium on agar plates for RNA extraction and pharmacological analyses. Anal Biochem 453:58–60PubMedCrossRefGoogle Scholar
  12. Mazur P, Baginsky W (1996) In vitro activity of 1, 3-beta-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem 271:14604–14609PubMedCrossRefGoogle Scholar
  13. Michielse CB, Pfannmüller A, Macios M, Rengers P, Dzikowska A, Tudzynski B (2014) The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol 91:472–493PubMedCrossRefGoogle Scholar
  14. Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci USA 104:8532–8537PubMedCrossRefPubMedCentralGoogle Scholar
  15. Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61PubMedGoogle Scholar
  16. Purschwitz J, Müller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol Genet Genomics 281:35–42PubMedCrossRefGoogle Scholar
  17. Sambrook J, Russell DW (2006) The condensed protocols from molecular cloning: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  18. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefPubMedCentralGoogle Scholar
  19. Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516PubMedCrossRefGoogle Scholar
  20. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438PubMedCrossRefGoogle Scholar
  21. Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory, New York, pp 168–169Google Scholar
  22. Werner S, Sugui JA, Steinberg G, Deising HB (2007) A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Mol Plant Microbe Interact 20:1555–1567PubMedCrossRefGoogle Scholar
  23. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mario Lange
    • 1
  • Ely Oliveira-Garcia
    • 2
  • Holger B. Deising
    • 2
  • Edgar Peiter
    • 1
  1. 1.Plant Nutrition Laboratory, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional SciencesMartin Luther University of Halle-WittenbergHalle (Saale)Germany
  2. 2.Phytopathology and Plant Protection, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional SciencesMartin Luther University of Halle-WittenbergHalle (Saale)Germany

Personalised recommendations