Current Genetics

, Volume 59, Issue 4, pp 171–185 | Cite as

Proteins involved in building, maintaining and remodeling of yeast cell walls

  • R. Teparić
  • Vladimir MršaEmail author
Research Article


The cell wall defines the shape and provides osmotic stability to the yeast cell. It also serves to anchor proteins required for communication of the yeast cell with surrounding molecules and other cells. It is synthesized as a complex structure with β-1,3-glucan chains forming the basic network to which β-1,6-glucan, chitin and a number of mannoproteins are attached. Synthesis, maintaining and remodeling of this complex structure require a set of different synthases, hydrolases and transglycosidases whose concerted activities provide necessary firmness but at the same time flexibility of the wall moiety. The present state of comprehension of the interplay of these proteins in the yeast cell wall is the subject of this article.


Yeast cell walls Cell wall proteins Glucan synthases Chitin synthases Glucanases Transglycosidases 


  1. Abe M, Qadota H, Hirata A, Ohya Y (2003) Lack of GTP-bound Rho1p in secretory vesicles of Saccharomyces cerevisiae. J Cell Biol 162:85–97PubMedCrossRefGoogle Scholar
  2. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035PubMedCrossRefGoogle Scholar
  3. Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latge J-P (2009) Cell wall β-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J Biol Chem 284:13401–13412PubMedCrossRefGoogle Scholar
  4. Bader O, Krauke Y, Hube B (2008) Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 8:116–131PubMedCrossRefGoogle Scholar
  5. Baladrón V, Ufano S, Dueñas E, Martin-Cuadrado AB, del Rey F, Vázquez de Aldana CR (2002) Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1:774–786PubMedCrossRefGoogle Scholar
  6. Becker HF, Piffeteau A, Thellend A (2011) Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides. BMC Res Notes 4:454–459PubMedCrossRefGoogle Scholar
  7. Bi E, Park H-O (2012) Cell polarization and cytokinesis in budding yeast. Genetics 191:347–387PubMedCrossRefGoogle Scholar
  8. Cabib E (2009) Two novel techniques for determination of polysaccharide cross-links show that Crh1 and Crh2 attach chitin to both β(1-6)- and β(1-3)-glucan in the Saccharomyces cerevisiae cell wall. Eukaryot Cell 8:1626–1636PubMedCrossRefGoogle Scholar
  9. Cabib E, Farkas V, Kosík O, Blanco N, Arroyo J, McPhie P (2008) Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283:29859–29872PubMedCrossRefGoogle Scholar
  10. Cappellaro C, Mrša V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180:5030–5037PubMedGoogle Scholar
  11. Caro LHP, Tettelin H, Vossen JH, Ram AFJ, Van den Ende H, Klis FM (1997) In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489PubMedCrossRefGoogle Scholar
  12. Chatterjee D (1997) The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol 1:579–588PubMedCrossRefGoogle Scholar
  13. Chuang JS, Schekman RW (1996) Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135:597–610PubMedCrossRefGoogle Scholar
  14. Cid V, Durán A, del Rey F, Snyder M, Nombela C, Sánchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386PubMedGoogle Scholar
  15. Colman-Lerner A, Chin TE, Brent R (2001) Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107:739–750PubMedCrossRefGoogle Scholar
  16. Cos T, Ford RA, Trilla JA, Duran A, Cabib E et al (1998) Molecular analysis of Chs3p participation in chitin synthase III activity. Eur J Biochem 256:419–426PubMedCrossRefGoogle Scholar
  17. De Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675PubMedCrossRefGoogle Scholar
  18. DeMarini DJ, Adams AE, Fares H, De Virgilio C, Valle G, Chuang JS, Pringle JR (1997) A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139:75–93PubMedCrossRefGoogle Scholar
  19. Dijkgraaf GJ, Brown JL, Bussey H (1996) The KNH1 gene of Saccharomyces cerevisiae is a functional homolog of KRE9. Yeast 12:683–692PubMedCrossRefGoogle Scholar
  20. Doolin MT, Johnson AL, Johnston LH, Butler G (2001) Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. Mol Microbiol 40:422–432PubMedCrossRefGoogle Scholar
  21. Douglas CM (2001) Fungal β-(1,3)-d-glucan synthesis. Med Mycol 39:55–66PubMedGoogle Scholar
  22. Dünkler A, Jorde S, Wendland J (2008) An Ashbya gossypii cts2 mutant deficient in a sporulation-specific chitinase can be complemented by Candida albicans CHT4. Microbiol Res 163:701–710PubMedCrossRefGoogle Scholar
  23. Ecker M, Deutzmann R, Lehle L, Mrša V, Tanner W (2006) Pir proteins of Saccharomyces cerevisiae are attached to β-1,3-glucan by a new protein-carbohydrate linkage. J Biol Chem 281:11523–11529PubMedCrossRefGoogle Scholar
  24. Fleet GH (1991) Cell walls. In: Rose AH, Harrison JS (eds) The yeasts, vol 4, edn. 2. Academic Press, New York, pp 199–277Google Scholar
  25. Gagnon-Arsenault I, Tremblay J, Bourbonnais Y (2006) Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Res 6:966–978PubMedCrossRefGoogle Scholar
  26. Gagnon-Arsenault I, Parise L, Tremblay J, Bourbonnais Y (2008) Activation mechanism, functional role, and shedding of glycosylphosphatidylinositol-anchored Yps1p at the Saccharomyces cerevisiae cell surface. Mol Microbiol 69:982–983PubMedCrossRefGoogle Scholar
  27. Garcia R, Bermejo C, Grau C, Perez R, Rodriguez-Pena JM, Francois J, Nombela C, Arroyo J (2004) The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279:15183–15195PubMedCrossRefGoogle Scholar
  28. Goldman RC, Sullivan PA, Zakula D, Capoblanco JO (1995) Kinetics of β-1,3-glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur J Biochem 227:372–378PubMedCrossRefGoogle Scholar
  29. Gómez-Esquer F, Rodríguez-Peña JM, Díaz G, Rodríguez E, Briza P, Nombela C, Arroyo J (2004) CRR1, a gene encoding a putative transglycosidase, is required for proper spore wall assembly in Saccharomyces cerevisiae. Microbiology 150:3269–3280PubMedCrossRefGoogle Scholar
  30. Grabinska K, Palamarczyk G (2007) Dolyhol biosynthesis in yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res 2:259–265Google Scholar
  31. Hagen I, Ecker M, Lagorce A, Francois JM, Sestak S, Rachel R, Grossmann G, Hauser NC, Hoheisel JD, Tanner W, Strahl S (2004) Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol Microbiol 52:1413–1425PubMedCrossRefGoogle Scholar
  32. Hartland RP, Vermuelen CA, Klis FM, Sietsma JH, Wessels JG (1994) The linkage of (1-3)-β-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10:1591–1599PubMedCrossRefGoogle Scholar
  33. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696PubMedGoogle Scholar
  34. Hurtado-Guerrero R, Schuettelkopf AW, Mouyna I, Ibrahim AFM, Shepherd S, Fontaine T, Latge JP, van Aalten DMF (2009) Molecular mechanisms of yeast cell wall glucan remodeling. J Biol Chem 284:8461–8469PubMedCrossRefGoogle Scholar
  35. Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M et al (1995) Characterization and gene cloning od 1,3-β-d-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem 231:845–854PubMedCrossRefGoogle Scholar
  36. Ishihara S, Hirata A, Nogami S, Beauvais A, Latge J-P, Ohya Y (2007) Homologous subunits of 1,3-β-glucan synthase are important for spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 6:143–156PubMedCrossRefGoogle Scholar
  37. Jiang B, Ram AFJ, Sheraton J, Klis FM, Bussey H (1995) Regulation of cell wall β-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol Gen Genet 248:260–269PubMedCrossRefGoogle Scholar
  38. Kalebina TS, Farkas V, Laurinavichiute DK, Gorlovoy PM, Fominov GV, Bartek P, Kulaev IS (2003) Deletion of BGL2 results in an increased chitin level in the cell wall of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 84:179–184PubMedCrossRefGoogle Scholar
  39. Kalebina TS, Plotnikova TA, Gorkovskii AA, Selyakh IO, Galzitskaya OV, Bezsonov EE, Gellissen G, Kulaev IS (2008) Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p. Prion 2:91–96PubMedCrossRefGoogle Scholar
  40. Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6:337–345PubMedCrossRefGoogle Scholar
  41. Kapteyn JC, Ram AF, Groos EM, Kollar R, Montijn RC et al (1997) Altered extent of cross-linking of β1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cel wall β1,3-glucan content. J Bacteriol 179:6279–6284PubMedGoogle Scholar
  42. Kauffman CA, Carver PL (2008) Update on echinocandin antifungals. Semin Respir Crit Care Med 29:211–219PubMedCrossRefGoogle Scholar
  43. Kitagaki H, Wu H, Shimoi H, Ito K (2002) Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol Microbiol 46:1011–1022PubMedCrossRefGoogle Scholar
  44. Klebl F, Tanner W (1989) Molecular cloning of a cell wall exo-β-1,3-glucanase from Saccharomyces cerevisiae. J Bacteriol 171:6259–6264PubMedGoogle Scholar
  45. Klis FM, Mol P, Helingwerf K, Bruhl S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256PubMedCrossRefGoogle Scholar
  46. Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and beta(1 → 3)-glucan. J Biol Chem 270:1170–1178PubMedCrossRefGoogle Scholar
  47. Komano H, Rockwell NC, Wang GT, Krafft GA, Fuller RS (1999) Purification and characterization of the yeast glycosylphosphatidylinositol-anchored, mono-basic specific aspartyl protease yapsin 2 (Mkc7). J Biol Chem 274:24431–24437PubMedCrossRefGoogle Scholar
  48. Kovacech B, Nasmyth K, Schuster T (1996) EGT2 gene transcription is induced predominantly by Swi5 in early G1. Mol Cell Biol 16:3264–3274PubMedGoogle Scholar
  49. Krysan DJ, Ting EL, Abeijon C, Kroos L, Fuller RS (2005) Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae. Eukaryot Cell 4:1364–1374PubMedCrossRefGoogle Scholar
  50. Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767PubMedGoogle Scholar
  51. Kurtz MB, Rex JH (2001) Glucan synthase inhibitors as antifungal agents. Adv Protein Chem 56:423–475PubMedCrossRefGoogle Scholar
  52. Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD, Francois JM (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357PubMedCrossRefGoogle Scholar
  53. Larriba G, Andaluz E, Cueva R, Basco RD (1995) Molecular biology of yeast exoglucanases. FEMS Microbiol Lett 125:121–126PubMedCrossRefGoogle Scholar
  54. Latgé J-P (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290PubMedCrossRefGoogle Scholar
  55. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343PubMedCrossRefGoogle Scholar
  56. Martin-Cuadrado AB, Dueñas E, Sipiczki M, Vázquez de Aldana CR, del Rey F (2003) The endo-β-1,3-glucanase Eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 116:1689–1698PubMedCrossRefGoogle Scholar
  57. Martin-Cuadrado AB, Fontaine T, Esteban PF, del Dedo JE, de Medina-Redondo M, del Rey F, Latgé JP, de Aldana CR (2008) Characterization of the endo-β-1,3-glucanase activity of S. cerevisiae Eng2 and other members of the GH81 family. Fungal Genet Biol 45:542–553PubMedCrossRefGoogle Scholar
  58. Mazan M, Ragni E, Popolo L, Farkaš V (2011) Catalytic properties of the Gas family β-1,3-glucanosyltransferases active in fungal cell wall biogenesis as determined by a novel fluorescent assay. Biochem J 438:275–282PubMedCrossRefGoogle Scholar
  59. Mazur P, Morin N, Bagynski W, el Sherbeini M, Clemas JA et al (1995) Differential expression and function of two homologous subunits of yeast 1,3-β-d-glucan synthase. Mol Cell Biol 15:5671–5681PubMedGoogle Scholar
  60. Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects:common principles and differences. Eur J Cell Biol 90:759–769PubMedCrossRefGoogle Scholar
  61. Merzendorfer H, Heinisch JJ (2013) Microcompartments within the yeast plasma membrane. Biol Chem 394:189–202PubMedCrossRefGoogle Scholar
  62. Montijn RC, Van Rinsum J, Van Schagen FA, Klis FM (1994) Glucomannoproteins in the cell wall of Saccharomyces cerevisiae contain a novel type of carbohydrate side-chain. J Biol Chem 269:19338–19342PubMedGoogle Scholar
  63. Mrša V, Tanner W (1999) Role of NaOH-extractable cell wall proteins Ccw5, Ccw6, Ccw7 and Ccw8 (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15:813–820PubMedCrossRefGoogle Scholar
  64. Mrša V, Klebl F, Tanner W (1993) Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-b-1,3-glucanase. J Bacteriol 175:2102–2106PubMedGoogle Scholar
  65. Mrša V, Ecker M, Strahl-Bolsinger S, Nimtz M, Lehle L et al (1999) Deletion of new covalently linked cell wall glycoproteins alters electrophoretic mobility of phosphorylated wall components of Sacharomyces cerevisiae. J Bacteriol 181:3076–3086PubMedGoogle Scholar
  66. Muthukumar G, Suhng SH, Magee PT, Jewell RD, Primerano DA (1993) The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-β-glucanase which contributes to ascospore thermoresistance. J Bacteriol 175:386–394PubMedGoogle Scholar
  67. Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50:206–212PubMedCrossRefGoogle Scholar
  68. Okada H, Abe M, Asakawa-Minemura M, Hirata A, Qadota H, Morishita K, Ohnuki S, Nogami S, Ohya Y (2010) Multiple functional domains of the yeast l,3-beta-glucan synthase subunit Fks1p revealed by quantitative phenotypic analysis of temperature-sensitive mutants. Genetics 184:1013–1024PubMedCrossRefGoogle Scholar
  69. Olsen V, Loh YP (2000) In vitro processing of nonanchored yapsin 1. Arch Biochem Biophys 375:315–321PubMedCrossRefGoogle Scholar
  70. Olsen V, Guruprasad K, Cawley NX, Chen H-C, Blundell TL, Loh YP (1998) Cleavage efficiency of the novel aspartic protease yapsin 1 (Yap3p) enhanced for substrates with arginine residues flanking the P1 site: correlation with electronegative active-site pockets predicted by molecular modeling. Biochemistry 37:2768–2777PubMedCrossRefGoogle Scholar
  71. Ono N, Yabe T, Sudoh M, Nakajima T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H (2000) The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein–protein interaction. Microbiology 146:385–391PubMedGoogle Scholar
  72. Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818PubMedCrossRefGoogle Scholar
  73. Osmond BC, Specht CA, Robbins PW (1999) Chitin synthase III: synthetic lethal mutants and “stress related” chitin synthesis that bypasses the CSD3/CHS6 pathway. Proc Natl Acad Sci USA 96:11206–11210PubMedCrossRefGoogle Scholar
  74. Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29:207–233PubMedCrossRefGoogle Scholar
  75. Osumi M (2012) Visualization of yeast cells by electron microscopy. J Electron Microsc 61:343–365CrossRefGoogle Scholar
  76. Ozaki K, Tanaka K, Imamura H, Hihara T, Kameyama T, Nonaka H, Hirano H, Matsuura Y, Takai Y (1996) Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15:2196–2207PubMedGoogle Scholar
  77. Pan X, Heitman J (2000) Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell–cell adhesion. Mol Cell Biol 20:8364–8372PubMedCrossRefGoogle Scholar
  78. Popolo L, Gilardelli D, Bonfante P, Vai M (1997) Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J Bacteriol 179:463–469PubMedGoogle Scholar
  79. Ragni E, Coluccio A, Rolli E, Rodriguez-Pena JM, Colasante G et al (2007) GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 6:302–316PubMedCrossRefGoogle Scholar
  80. Ramírez M, Hernández LM, Larriba G (1989) A similar protein portion of two exoglucanases secreted by Saccharomyces cerevisiae. Arch Microbiol 151:391–398PubMedCrossRefGoogle Scholar
  81. Rodicio R, Heinisch JJ (2010) Together we are strong: cell wall integrity sensors in yeasts. Yeast 27:531–540PubMedCrossRefGoogle Scholar
  82. Rodriguez-Peña JM, Rodriguez C, Alvarez A, Nombela C, Arroyo J (2002) Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J Cell Sci 115:2549–2558PubMedGoogle Scholar
  83. Rodríguez-Peña JM, Cid VJ, Arroyo J, Nombela C (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20:3245–3255PubMedCrossRefGoogle Scholar
  84. Roh DH, Bowers B, Riezman H, Cabib E (2002) Rho1p mutations specific for regulation of β-1,3-glucan synthesis and the order of assembly of the yeast cell wall. Mol Microbiol 44:1167–1183PubMedCrossRefGoogle Scholar
  85. Rolli E, Ragni E, Calderon J, Porello S, Fascio U, Popolo L (2009) Immobilization of the glycosylphosphatidylinositol-anchored Gas1 protein into the chitin ring and septum is required for proper morphogenesis in yeast. Mol Biol Cell 20:4856–4870PubMedCrossRefGoogle Scholar
  86. Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378PubMedCrossRefGoogle Scholar
  87. Roncero C, Sanchez Y (2010) Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 27:521–530PubMedCrossRefGoogle Scholar
  88. San Segundo P, Correa J, Vazquez de Aldanadel CR, Rey F (1993) SSG1, a gene encoding a sporulation-specific 1,3-β-glucanase in Saccharomyces cerevisiae. J Bacteriol 175:3823–3837PubMedGoogle Scholar
  89. Saxena IM, Brown RM Jr, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–1424PubMedGoogle Scholar
  90. Schmidt S, Ranieri S, Witte S, Matern U, Martens S (2011) Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glycosides. Appl Environ Microbiol 77:1751–1757PubMedCrossRefGoogle Scholar
  91. Sestak S, Hagen I, Tanner W, Strahl S (2004) Scw10p, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae. Microbiology 150:3197–3208PubMedCrossRefGoogle Scholar
  92. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297PubMedCrossRefGoogle Scholar
  93. Teparić R, Stuparević I, Mrša V (2004) Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiology (SGM) 150:3145–3150CrossRefGoogle Scholar
  94. Teparić R, Stuparević I, Mrša V (2010) Incorporation of homologous and heterologous proteins in the Saccharomyces cerevisiae cell wall. Food Technol Biotechnol 48:317–328Google Scholar
  95. Utsugi T, Minemura M, Hirata A, Abe M, Watanabe D et al (2002) Movement of yeast β-1,3-glucan synthase is essential for uniform cell wall synthesis. Genes Cells 7:1–9PubMedCrossRefGoogle Scholar
  96. Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, Cullen PJ (2008) Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol 181:1073–1081PubMedCrossRefGoogle Scholar
  97. Van der Vaart JM, Caro LHP, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177:3104–3110PubMedGoogle Scholar
  98. Vrabioiu AM, Mitchison TJ (2006) Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443:466–469PubMedCrossRefGoogle Scholar
  99. Wloka C, Bi E (2012) Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken) 69:710–726CrossRefGoogle Scholar
  100. Yamaguchi M, Namiki Y, Okada H, Mori Y, Furukawa H et al (2011) Structome of Saccharomyces cerevisiae determined by freeze substitution and serial ultrathin-sectioning electron microscopy. J Electron Microsc (Tokyo) 60:321–335CrossRefGoogle Scholar
  101. Yin QY, de Groot PW, Dekker HL, de Jong L, Klis FM, de Koster CG (2005) Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280:20894–20901PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations