Current Genetics

, Volume 59, Issue 1–2, pp 1–31 | Cite as

Regulations of sugar transporters: insights from yeast

Review

Abstract

Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.

Keywords

Glucose signalling Sugar transporter Sensing element Yeast 

Notes

Acknowledgments

I am grateful to Jaromir Zahradka for figure design and preparation and to Arnost Kotyk for careful reading the manuscript. This work has been supported by grant GACR P503/10/0307 and RVO:67985823.

References

  1. Abramczyk D, Holden S, Page CJ, Reece RJ (2012) The interplay of a ligand sensor and an enzyme in controlling expression of the yeast GAL genes. Eukaryot Cell 11:334–342PubMedCrossRefGoogle Scholar
  2. Ahuatzi D, Herrero P, de la Cera T, Moreno F (2004) The glucose-regulated nuclear localization of hexokinase 2 in S. cerevisiae is Mig1-dependent. J Biol Chem 279:14440–14446PubMedCrossRefGoogle Scholar
  3. Ahuatzi D, Riera A, Peláez R, Herrero P, Moreno F (2007) Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282:4485–4493PubMedCrossRefGoogle Scholar
  4. Alibhoy AA, Giardino BJ, Dunton DD, Chiang HL (2012) Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway. Autophagy 8:29–46PubMedCrossRefGoogle Scholar
  5. Alves SL Jr, Herberts RA, Hollatz C, Trichez D, Miletti LC, de Araujo PS, Stambuk BU (2008) Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 74:1494–1501PubMedCrossRefGoogle Scholar
  6. Alvarez FJ, Konopka JB (2007) Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell 18:965–975PubMedCrossRefGoogle Scholar
  7. Arino J (2010) Integrative response to high pH stress in S. cerevisiae. OMICS 14:517–523PubMedCrossRefGoogle Scholar
  8. Bali M, Zhang B, Morano KA, Michels CA (2003) The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p. J Biol Chem 278:47441–47448PubMedCrossRefGoogle Scholar
  9. Bao WG, Guiard B, Fang ZA, Donnini C, Gervais M, Passos FML, Ferrero I, Fukuhara H, Bolotin-Fukuhara M (2008) Oxygen-dependent transcriptional regulator Hap1 limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. Eukaryot Cell 7:1895–1905PubMedCrossRefGoogle Scholar
  10. Barnett JA (2008) A history of research on yeasts 13. Active transport and the uptake of various metabolites. Yeast 25:689–731PubMedCrossRefGoogle Scholar
  11. Baruffini E, Goffrini P, Donnini C, Lodi T (2006) Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Res 6:1235–1242PubMedCrossRefGoogle Scholar
  12. Becuwe M, Vieira N, Lara D, Gomes-Rezende J, Soares-Cunha C, Casal M, Haguenauer- Tsapis R, Vincent O, Paiva S, Léon S (2012a) A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J Cell Biol 196:247–259PubMedCrossRefGoogle Scholar
  13. Becuwe M, Herrador A, Haguenauer-Tsapis R, Vincent O, Léon S (2012b) Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Biochem Res Int. doi:10.1155/2012/242764 PubMedGoogle Scholar
  14. Belinchon MM, Gancedo JM (2007a) Different signalling pathways mediate glucose induction of SUC2, HXT1 and pyruvate decarboxylase in yeast. FEMS Yeast Res 7:40–47PubMedCrossRefGoogle Scholar
  15. Belinchon MM, Gancedo MM (2007b) Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signalling pathways. FEMS Yeast Res 7:808–818PubMedCrossRefGoogle Scholar
  16. Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2010) Dynamic analysis of cytosolic glucose and ATP levels in yeast with optical sensors. Biochem J 432:393–406CrossRefGoogle Scholar
  17. Bertram PG, Zeng C, Thorson J, Shaw AS, Zheng XP (1998) The 14-3-3 proteins positively regulate rapamycin-sensitive signalling. Curr Biol 8:1259–1267PubMedCrossRefGoogle Scholar
  18. Betina S, Goffrini P, Ferrero I, Wésolowski-Louvel M (2001) RAG4 gene encodes a glucose sensor in Kluyveromyces lactis. Genetics 158:541–548PubMedGoogle Scholar
  19. Bhat PJ, Hopper JE (1990) Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae. Genetics 125:281PubMedGoogle Scholar
  20. Bhat PJ, Hopper JE (1992) Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol Cell Biol 12:2701–2707PubMedGoogle Scholar
  21. Bhat PJ, Murthy TVS (2001) Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol Microbiol 40:1059–1066PubMedCrossRefGoogle Scholar
  22. Billard P, Menart S, Blaisonneau J, Bolotin-Fukuhara M, Fukuhara H, Wésolowski-Louvel M (1996) Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. J Bacteriol 178:5860–5866PubMedGoogle Scholar
  23. Bisson LF, Coons DM, Kruckeberg AL, Lewis DA (1993) Yeast sugar transporters. Crit Rev Biochem Mol Biol 28:259–308PubMedCrossRefGoogle Scholar
  24. Blaisonneau J, Fukuhara H, Wésolowski-Louvel M (1997) The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. Mol Gen Genet 253:469–477PubMedCrossRefGoogle Scholar
  25. Boles E, André B (2004) Role of transporter-like sensors in glucose and amino acid signaling in yeast. Top Curr Genet 9:121–153CrossRefGoogle Scholar
  26. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111PubMedCrossRefGoogle Scholar
  27. Braun B, Pfirrmann T, Menssen R, Hofmann K, Scheel H, Wolf DH (2011) Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. FEBS Lett 585:3856–3861PubMedCrossRefGoogle Scholar
  28. Brega E, Zufferey R, Ben Mamoun C (2004) Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot Cell 3:135–143PubMedCrossRefGoogle Scholar
  29. Breunig KD (1989) Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9. Mol Gen Genet 216:422PubMedCrossRefGoogle Scholar
  30. Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero I, Frontani L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C, Steensma HY, Wésolowski-Louvel M, Zeeman AM (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzym Microb Technol 26:771–780CrossRefGoogle Scholar
  31. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105PubMedCrossRefGoogle Scholar
  32. Brondijk THC, Konings WN, Poolman B (2001) Regulation of maltose transport in Saccharomyces cerevisiae. Arch Microbiol 176:96–105PubMedCrossRefGoogle Scholar
  33. Brown V, Sexton JA, Johnston M (2006) A glucose sensor in Candida albicans. Eukaryot Cell 5:1726–1737PubMedCrossRefGoogle Scholar
  34. Brown V, Sabina J, Johnston M (2009) Specialized sugar sensing in diverse fungi. Curr Biol 19:436–441PubMedCrossRefGoogle Scholar
  35. Brown CA, Murray AW, Verstrepen KJ (2010) Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol 20:895–903PubMedCrossRefGoogle Scholar
  36. Busti S, Cocceti P, Alberghina L, Vanoni M (2010) Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors 10:6195–6240PubMedCrossRefGoogle Scholar
  37. Butler DK, All O, Goffena J, Loveless T, Wilson T, Toenjes KA (2006) The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal Genet Biol 43:573–582PubMedCrossRefGoogle Scholar
  38. Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283–291PubMedGoogle Scholar
  39. Casamayor A, Serrano R, Platara M, Fasádo C, Ruiz A, Arino J (2012) The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem J 444:39–49PubMedCrossRefGoogle Scholar
  40. Castillon GA, Watanabe R, Taylor M, Schwabe TM, Riezman H (2009) Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic 10:186–200PubMedCrossRefGoogle Scholar
  41. Chang YS, Dubin RA, Perkins E, Michels CA, Needleman RB (1989) Identification and characterization of the maltose permease in a genetically defined Saccharomyces strain. J Bacteriol 171:6148–6154PubMedGoogle Scholar
  42. Charron MJ, Michels CA (1986) Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Mol Cell Biol 6:3891–3899PubMedGoogle Scholar
  43. Charron MJ, Michels CA (1988) The naturally occuring alleles of MAL1 in Saccharomyces species evolved by various mutagenic processes including chromosomal rearrangement. Genetics 120:83–93PubMedGoogle Scholar
  44. Charron MJ, Read E, Haut SR, Michels CA (1989) Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122:307–316PubMedGoogle Scholar
  45. Chen XJ, Wésolowski-Louvel M, Fukuhara H (1992) Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol Gen Genet 233:97–105PubMedCrossRefGoogle Scholar
  46. Cheng Q, Michels CA (1989) The maltose permease encoded by the MAL61 gene of Saccharomyces cerevisiae exhibits both sequence and structural homology to other sugar transporters. Genetics 123:477–484PubMedGoogle Scholar
  47. Cheng QI, Michels CA (1991) MAL11 and MAL61 encode the inducible high-affinity maltose transporter of Saccharomyces cerevisiae. J Bacteriol 173:1817–1820PubMedGoogle Scholar
  48. Chiang MC, Chiang HL (1998) Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase-containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from vesicles to the vacuole for degradation. J Cell Biol 140:1347–1356PubMedCrossRefGoogle Scholar
  49. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304PubMedCrossRefGoogle Scholar
  50. Coons DM, Vagnoli P, Bisson LF (1997) The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast 13:9–20PubMedCrossRefGoogle Scholar
  51. Cotton P, Soulard A, Wésolowski-Louvel M, Lemaire M (2012) The SWI/SNF KlSnf2 subunit controls the glucose signalling pathway to coordinate glycolysis and glucose transport in Kluyveromyces lactis. Eukaryot Cell 11(11):1382–1390PubMedCrossRefGoogle Scholar
  52. Czyz M, Nagiec MM, Dickson RC (1993) Autoregulation of GAL4 transcription is essential for rapid growth of Kluyveromyces lactis on lactose and galactose. Nucl Acids Res 21:4378–4382PubMedCrossRefGoogle Scholar
  53. Dancourt J, Barlowe C (2010) Protein sorting receptors in the early secretory pathway. Annu Rev Biochem 79:777–802PubMedCrossRefGoogle Scholar
  54. Day RE, Higgins VJ, Rogers PJ, Dawes IW (2002) Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae. Appl Environ Microbiol 68:5326–5335PubMedCrossRefGoogle Scholar
  55. Dechant R, Peter M (2008) Nutrient signals driving cell growth. Curr Opin Cell Biol 20:678–687PubMedCrossRefGoogle Scholar
  56. DeRissi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686CrossRefGoogle Scholar
  57. Deshaies RJ (1999) SCF and cullin/ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467PubMedCrossRefGoogle Scholar
  58. DeVirgilio C, Loewith R (2006) Cell growth control: little eukaryotes make big contributions. Oncogene 25:6392–6415CrossRefGoogle Scholar
  59. DeVit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618Google Scholar
  60. Dickson RC, Barr K (1983) Characterization of lactose transport in Kluyveromyces lactis. J Bacteriol 154:1245–1251PubMedGoogle Scholar
  61. Diderich JA, Schepper M, van Hoek O, Luttik MA, van Dijken JP, Pronk JT, Klaasen P, Boelens HF, de Mattos MJ, van Dam K, Kruckeberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359PubMedCrossRefGoogle Scholar
  62. Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K (2001) Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18:1515–1524PubMedCrossRefGoogle Scholar
  63. Didion T, Regenberg B, Jorgensen MU, Kielland-Brandt MC, Andersen HA (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27:643–650PubMedCrossRefGoogle Scholar
  64. Dietvorst J, Londesborough J, Steensma HY (2005) Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22:775–788PubMedCrossRefGoogle Scholar
  65. Dietvorst J, Karhumaa K, Kielland-Brandt MC, Brandt A (2010) Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae. Yeast 27:131–138PubMedGoogle Scholar
  66. Diezemann A, Boles E (2003) Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr Genet 43:281–288PubMedCrossRefGoogle Scholar
  67. Dlugai S, Hippler S, Wieczorke R, Boles E (2001) Glucose-dependent and independent signalling functions of the yeast glucose sensor Snf3. FEBS Lett 505:389–392PubMedCrossRefGoogle Scholar
  68. Dombek KM, Kacherovsky N, Young ET (2004) The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae. J Biol Chem 279:39165–39174PubMedCrossRefGoogle Scholar
  69. Dong J, Dickson RC (1997) Glucose represses the lactose–galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1-dependent pathway that modulates galactokinase (GAL1) gene expression. Nucl Acids Res 25:3657–3664PubMedCrossRefGoogle Scholar
  70. Dupré S, Urban-Grimal D, Haguenauer-Tsapis R (2004) Ubiquitin and endocytic internalization in yeast and animal cells. Biochim Biophys Acta 1695:89–111PubMedCrossRefGoogle Scholar
  71. Elbing K, Stahlberg A, Hohmann S, Gustafsson L (2004a) Transcriptional response to glucose at different glycolytic rates in Saccharomyces cerevisiae. Eur J Biochem 271:4855–4864PubMedCrossRefGoogle Scholar
  72. Elbing K, Larsson C, Bill RM, Albert E, Snoep JL, Boles E, Hohmann S, Gustafsson L (2004b) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70:5323–5330PubMedCrossRefGoogle Scholar
  73. Fan J, Chaturvedi V, Shen SH (2002) Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol 55:336–346PubMedCrossRefGoogle Scholar
  74. Flick KM, Spielevoy N, Kalashnikova TI, Guaderrama M, Zhu Q, Chang HC, Wittenberg C (2003) Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14:3230–3241PubMedCrossRefGoogle Scholar
  75. Forsberg H, Ljungdahl PO (2001) Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet 40:91–109PubMedCrossRefGoogle Scholar
  76. Gadura N, Michels CA (2006) Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization. Curr Genet 50:101–114PubMedCrossRefGoogle Scholar
  77. Gadura N, Robinson LC, Michels CA (2006) Glc7–Reg1 phosphatase signals to Yck1,2 casein kinase 1 to regulate transport activity and glucose-induced inactivation of Saccharomyces maltose permease. Genetics 172:1427–1439PubMedCrossRefGoogle Scholar
  78. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361PubMedGoogle Scholar
  79. Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704PubMedCrossRefGoogle Scholar
  80. Gaur M, Puri N, Manoharlal R, Rai V, Mukopadhayay G, Choudhury D, Prasad R (2008) MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics 9:579PubMedCrossRefGoogle Scholar
  81. Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein in yeast. Cell 40:767–774PubMedCrossRefGoogle Scholar
  82. Godecke A, Zachariae W, Arvanitidis A, Breunig KD (1991) Coregulation of the Kluyveromyces lactis lactose permease and β-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter. Nucl Acids Res 19:5351–5358PubMedCrossRefGoogle Scholar
  83. Goffrini P, Wésolowski-Louvel M, Ferrero I, Fukuhara H (1990) RAG1 gene of the yeast Kluyveromyces lactis codes for a sugar transporter. Nucl Acids Res 18:5294–5294PubMedCrossRefGoogle Scholar
  84. Greatrix BW, van Vuuren HJJ (2006) Expression of the HXT13, HXT15 and HXT17 genes in Saccharomyces cerevisiae and stabilization of the HXT1 gene transcript by sugar-induced osmotic stress. Curr Genet 49:205–217PubMedCrossRefGoogle Scholar
  85. Griggs DW, Johnston M (1991) Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc Natl Acad Sci USA 88:8597–8601PubMedCrossRefGoogle Scholar
  86. Han EK, Cotty F, Sottas C, Jiang H, Michels CA (1995) Charactrization of AGT1 encoding a general-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107PubMedCrossRefGoogle Scholar
  87. Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SI (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96:14866–14870PubMedCrossRefGoogle Scholar
  88. Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420PubMedCrossRefGoogle Scholar
  89. Herzig Y, Sharpe HJ, Elbaz Y, Munro S, Schuldiner M (2012) A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol 10(5):e1001329PubMedCrossRefGoogle Scholar
  90. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172PubMedCrossRefGoogle Scholar
  91. Hirayama T, Maeda T, Saito H, Shinozaki K (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol Gen Genet 249:127–138PubMedCrossRefGoogle Scholar
  92. Hittinger CD, Rokas A, Carroll SB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci USA 101:14144–14149PubMedCrossRefGoogle Scholar
  93. Hnatova M, Wésolowski-Louvel M, Dieppois G, Deffaud J, Lemaire M (2008) Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis. Eukaryot Cell 7:1299–1308PubMedCrossRefGoogle Scholar
  94. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372PubMedCrossRefGoogle Scholar
  95. Holzer H (1976) Catabolite inactivation in yeast. Trends Biochem Sci 1:178–181Google Scholar
  96. Hong SP, Carlson M (2007) Regulation of Snf1 protein kinase in response to environmental stress. J Biol Chem 282:16838–16845PubMedCrossRefGoogle Scholar
  97. Hong SP, Leper FC, Woods A, Carling D, Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100:8839–8843PubMedCrossRefGoogle Scholar
  98. Horák J (2003) The role of ubiquitin in down-regulation and intracellular sorting of membrane proteins: insights from yeast. Biochim Biophys Acta 1614:139–155PubMedCrossRefGoogle Scholar
  99. Horak J, Wolf DH (1997) Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol 179:1541–1549PubMedGoogle Scholar
  100. Horak J, Wolf DH (2001) Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J Bacteriol 183:3083–3088PubMedCrossRefGoogle Scholar
  101. Horak J, Wolf DH (2005) The ubiquitin ligase SCFGrr1 is required for Gal2p degradation in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 335:1185–1190PubMedCrossRefGoogle Scholar
  102. Horak J, Regelmann J, Wolf DH (2002) Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signalling pathway. J Biol Chem 277:8248–8254PubMedCrossRefGoogle Scholar
  103. Hu Z, Nehlin JO, Ronne H, Michels CA (1995) MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Curr Genet 28:258–266PubMedCrossRefGoogle Scholar
  104. Hu Z, Gibson AW, Kim JH, Wojciechowitz LA, Zhang B, Michels CA (1999) Functional domain analysis of the Saccharomyces MAL-activator. Curr Genet 36:1–12PubMedCrossRefGoogle Scholar
  105. Hu Z, Yue Y, Jiang H, Zhang B, Sherwood PW, Michels CA (2000) Analysis of the mechanism by which glucose inhibits maltose induction of MAL gene expression in Saccharomyces. Genetics 154:121–132PubMedGoogle Scholar
  106. Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJ, Sullivan PA, Farley PC (2004) Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology 150:3041–3049PubMedCrossRefGoogle Scholar
  107. Hung G, Brown C, Wolfe AB, Liu J, Chiang HL (2004) Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 279:49138–49150PubMedCrossRefGoogle Scholar
  108. Jiang R, Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 10:3105–3115PubMedCrossRefGoogle Scholar
  109. Jiang R, Carlson M (1997) The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17:2099–2106PubMedGoogle Scholar
  110. Jiang H, Medintz I, Michels CA (1997) Two glucose sensing/signalling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces. Mol Biol Cell 8:1293–1304PubMedGoogle Scholar
  111. Jiang H, Medintz I, Zhang B, Michels CA (2000a) Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. J Bacteriol 182:647–652PubMedCrossRefGoogle Scholar
  112. Jiang H, Tatchell K, Liu S, Michels CA (2000b) Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. Mol Gen Genet 263:411–422PubMedCrossRefGoogle Scholar
  113. Jiang FL, Frey BR, Evans ML, Friel JC, Hopper JE (2009) Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol Cell Biol 29:5604–5610PubMedCrossRefGoogle Scholar
  114. Johnston M, Kim JH (2005) Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33:247–252PubMedCrossRefGoogle Scholar
  115. Johnston SA, Salmeron JM Jr, Dincher SS (1987) Interaction of positive and negative regulatory proteins in the galactose regulon in yeast. Cell 50:143–146PubMedCrossRefGoogle Scholar
  116. Johnston M, Flick JS, Pexton M (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14:3834–3841PubMedGoogle Scholar
  117. Jouandot IID, Roy A, Kim JH (2011) Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem 112:3268–3275PubMedCrossRefGoogle Scholar
  118. Kaniak A, Xue Z, Macool D, Kim JH, Johnston M (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell 3:221–231PubMedCrossRefGoogle Scholar
  119. Karhumaa K, Wu B, Kielland-Brandt M (2010) Conditions with high intracellular glucos inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae. J Cell Biochem 110:920–925PubMedCrossRefGoogle Scholar
  120. Kim JH (2009) DNA-binding properties of the yeast Rgt1 repressor. Biochimie 91:300–303PubMedCrossRefGoogle Scholar
  121. Kim JH, Johnston M (1996) Two glucose sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in S. cerevisiae. J Biol Chem 281:26144–26149CrossRefGoogle Scholar
  122. Kim JH, Polish J, Johnston M (2003) Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol 23:5208–5216PubMedCrossRefGoogle Scholar
  123. Kim JH, Brachet V, Moriya H, Johnston M (1996) Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell 5:167–173CrossRefGoogle Scholar
  124. Kota J, Lungdahl PO (2004) Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol 168:79–88PubMedCrossRefGoogle Scholar
  125. Krampe S, Boles E (2002) Starvation-induced degradation of yeast hexose transporter Hxt7p is dependent on endocytosis, autophagy and the terminal sequences of the permease. FEBS Lett 513:193–196PubMedCrossRefGoogle Scholar
  126. Krampe S, Stamm O, Hollenberg CP, Boles E (1998) Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441:343–347PubMedCrossRefGoogle Scholar
  127. Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292PubMedCrossRefGoogle Scholar
  128. Kruckeberg AL, Ye L, Berden JA, van Dam K (1999) Functional expression, quantification and cellular localization of the Hxk2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein. Biochem J 339:299–307PubMedCrossRefGoogle Scholar
  129. Kumar PR, Yu Y, Sternglanz R, Johnston SA, Joshua-Tor L (2008) NADP regulates the yeast GAL induction system. Science 319:1090–1092PubMedCrossRefGoogle Scholar
  130. Kuo SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose-uptake and exchange in galactokinaseless cell. J Bacteriol 103:671–678Google Scholar
  131. Kuttykrishnan S, Sabina J, Langton LL, Johnston M, Brent MR (2010) A quantitative model of glucose signaling in yeast reveals an incoherent feed forvard loop leasing to a specific, transient pulse of transcription. Proc Natl Acad Sci USA 107:16743–16748PubMedCrossRefGoogle Scholar
  132. Kuzhandaivelu N, Jones KJ, Martin AK, Dickson RC (1992) The signal for glucose repression of the lactose–galactose regulon is amplified through subtle modulation of transcription of the Kluyveromyces lactis Kl-GAL4 activator gene. Mol Cell Biol 12:1924–1931PubMedGoogle Scholar
  133. Lafuente MJ, Gancedo C, Jauniaux JC, Gancedo JM (2000) Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol Microbiol 35:161–172PubMedCrossRefGoogle Scholar
  134. Lagunas R (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev 10:229–242PubMedGoogle Scholar
  135. Lakshmanan J, Mosley AL, Ozcan S (2003) Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr Genet 44:19–25PubMedCrossRefGoogle Scholar
  136. Lamphier MS, Ptashne M (1992) Multiple mechanisms mediate glucose repression of the yeast GAL1 gene. Proc Natl Acad Sci USA 89:5922–5926PubMedCrossRefGoogle Scholar
  137. Lavy T, Kumar R, He H, Joshua-Tor L (2012) The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes Dev 26:294–303PubMedCrossRefGoogle Scholar
  138. Leandro MJ, Fonseca C, Goncalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9:511–525PubMedCrossRefGoogle Scholar
  139. Lee MCS, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123PubMedCrossRefGoogle Scholar
  140. Lemaire M, Wésolowski-Louvel M (2004) Enolase and glycolytic flux play a role in the regulation of the glucose permease gene RAG1 of Kluyveromyces lactis. Genetics 168:723–731PubMedCrossRefGoogle Scholar
  141. Lemaire M, Guyon A, Betina S, Wésolowski-Louvel M (2002) Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. Curr Genet 40:355–364PubMedCrossRefGoogle Scholar
  142. Léon S, Haguenauer-Tsapis R (2009) Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp Cell Res 315:1574–1583PubMedCrossRefGoogle Scholar
  143. Leonardo J, Bhairi S, Dickson RC (1987) Identification of an upstream activator sequence that regulates induction of the β-galactosidase gene in Kluyveromyces lactis. Mol Cell Biol 7:4369–4376PubMedGoogle Scholar
  144. Levine J, Tanouye L, Michels CA (1992) The UASMAL is a bidirectional promoter element required for the expression of both MAL61 and MAL62 genes of the Saccharomyces MAL6 locus. Curr Genet 22:181–189PubMedCrossRefGoogle Scholar
  145. Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966PubMedGoogle Scholar
  146. Lin CH, MacGum JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin–ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135:714–725PubMedCrossRefGoogle Scholar
  147. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Opplinger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468PubMedCrossRefGoogle Scholar
  148. Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9:777–787PubMedGoogle Scholar
  149. Lucero P, Lagunas R (1997) Catabolite inactivation of the yeast maltose transporter requires ubiquitin–ligase npi1/rsp5 and ubiquitin–hydrolase npi2/doa4. FEMS Microbiol Lett 147:273–277PubMedCrossRefGoogle Scholar
  150. Lucero P, Penalver E, Vela R, Lagunas R (2001) Monoubiquitiantion is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae. J Bacteriol 182:241–243CrossRefGoogle Scholar
  151. Ludin K, Jiang R, Carlson M (1998) Glucose-regulated interaction of a regulatory subunit of protein phosphatase I with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:6245–6250PubMedCrossRefGoogle Scholar
  152. Luo L, Tong XZ, Farley PC (2007) The Candida albicans gene HGT12 (orf19.7094) encodes a hexose transporter. FEMS Immunol Med Microbiol 51:14–17PubMedCrossRefGoogle Scholar
  153. Lutfiyya LL, Johnston M (1996) Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol 16:4790–4797PubMedGoogle Scholar
  154. Lutfiyya LL, Iyer VR, DeRisi J, DeVitt MJ, Brown PO, Johnston M (1998) Characterization of three related glucose repressors and gene they regulate in Saccharomyces cerevisiae. Genetics 150:1377–1391PubMedGoogle Scholar
  155. Maier A, Volker B, Boles E, Fuhrmann GF (2002) Characterization of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–550PubMedGoogle Scholar
  156. Manolescu A, Salas-Burgos AM, Fischbarg J, Cheeseman CI (2005) Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). J Biol Chem 280:42978–42983PubMedCrossRefGoogle Scholar
  157. Marger MD, Saier MHJ (1993) A major superfamily of transmembrane facilitators that catalyze uniport, symport and antipody. Trends Biochem Sci 18:13–20PubMedCrossRefGoogle Scholar
  158. Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: structure of a protein–DNA complex. Nature 356:408–414PubMedCrossRefGoogle Scholar
  159. Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17:1007–1013PubMedCrossRefGoogle Scholar
  160. Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166PubMedCrossRefGoogle Scholar
  161. Mayordomo I, Regelmann J, Horak J, Sanz P (2003) Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease. FEBS Lett 544:160–164PubMedCrossRefGoogle Scholar
  162. McCartney RR, Schmidt MC (2001) Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as distinct step mediated by the Snf4 subunit. J Biol Chem 276:36460–36466PubMedCrossRefGoogle Scholar
  163. Medintz I, Jiang H, Han EK, Cui W, Michels CA (1996) Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. J Bacteriol 178:2245–2254PubMedGoogle Scholar
  164. Medintz I, Jiang H, Michels CA (1998) The role of ubiquitin-conjugation in glucose-induced proteolysis of Saccharomyces maltose permease. J Biol Chem 273:34454–34462PubMedCrossRefGoogle Scholar
  165. Medintz I, Wang X, Hradek T, Michels CA (2000) A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Biochemistry 39:4518–4526PubMedCrossRefGoogle Scholar
  166. Melcher K, Xu HE (2001) Gal80–Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. EMBO J 20:841–851PubMedCrossRefGoogle Scholar
  167. Meyer J, Walker-Jonah A, Hollenberg CP (1991) Galactokinase encoded by GAL1 is bifunctional protein required for the induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Mol Cell Biol 11:5454–5461PubMedGoogle Scholar
  168. Milkowski C, Krampe S, Weirich J, Hasse V, Boles E, Breunig KD (2001) Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake. J Bacteriol 183:5223–5229PubMedCrossRefGoogle Scholar
  169. Moreno F, Ahuatzi D, Riera A, Palomino CA, Herrero P (2005) Glucose sensing through the Hxk2-dependent signalling pathway. Biochem Soc Trans 33:265–268PubMedCrossRefGoogle Scholar
  170. Moriya H, Johnston M (2004) Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA 101:1572–1577PubMedCrossRefGoogle Scholar
  171. Mosley AL, Lakshmanan J, Aryal BK, Ozcan S (2003) Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J Biol Chem 278:10322–10327PubMedCrossRefGoogle Scholar
  172. Murad AMA, Gaillardin C, d’Enfert C, Tournu H, Tekaia F, Talibi D, Marechal D, Marchais V, Cottin J, Brown AJP (2001) Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42:981–993PubMedCrossRefGoogle Scholar
  173. Nath N, McCartney RR, Schmidt MC (2002) Purification and characterization of Snf1 complexes containing a defined β subunit composition. J Biol Chem 277:50403–50408PubMedCrossRefGoogle Scholar
  174. Naumoff DG, Naumov GI (2010) Discovery of a novel family of alpha-glucosidase IMA genes in yeast Saccharomyces cerevisiae. Dokl Biochem Biophys 432:114–116PubMedCrossRefGoogle Scholar
  175. Neil H, Hnatova M, Wésolowski-Louvel M, Rycovska A, Lemaire M (2007) Sck1 activator coordinates glucose transport and glycolysis and is controlled by Rag8 casein kinase in Kluyveromyces lactis. Mol Microbiol 63:1537–1548PubMedCrossRefGoogle Scholar
  176. Nikko E, Pelham HRB (2009) Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic 10:1856–1867PubMedCrossRefGoogle Scholar
  177. Nourani A, Wésolowski-Louvel M, Delaveau T, Jacq C, Delahodde A (1997) Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Mol Cell Biol 17:5453–5460PubMedGoogle Scholar
  178. Novak S, Zechner-Krpan V, Maric V (2004) Regulation of maltose transport and metabolism in Saccharomyces cerevisiae. Food Technol Biotech 42:213–218Google Scholar
  179. Ostling J, Roone H (1998) Negative control of the Mig1 repressor by Snf1-dependent phosphorylation in the absence of glucose. Eur J Biochem 252:162–168PubMedCrossRefGoogle Scholar
  180. Otterstedt K, Larsson C, Bill RM, Stahlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:532–537PubMedCrossRefGoogle Scholar
  181. Ozcan S (2002) Two different signals regulate repression and induction of gene expression by glucose. J Biol Chem 277:46993–46997PubMedCrossRefGoogle Scholar
  182. Ozcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572PubMedGoogle Scholar
  183. Ozcan S, Johnston M (1996) Two different repressors collaborate to restrict expression of the glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol Cell Biol 16:5536–5545Google Scholar
  184. Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569PubMedGoogle Scholar
  185. Ozcan S, Dover J, Rosenwald AG, Wolfl S, Johnston M (1996a) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428–12432PubMedCrossRefGoogle Scholar
  186. Ozcan S, Leong T, Johnston M (1996b) Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426PubMedGoogle Scholar
  187. Ozcan S, Dover J, Johnston M (1998) Glucose sensing and signalling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573PubMedCrossRefGoogle Scholar
  188. Paiva S, Kruckeberg AL, Casal M (2002) Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Biochem J 363:737–744PubMedCrossRefGoogle Scholar
  189. Palma M, Seret ML, Baret PV (2007) Combined phylogenetic and neighbourhood analysis of the hexose transporters and glucose sensors in yeasts. FEMS Yeast Res 9:526–534CrossRefGoogle Scholar
  190. Palomino A, Herrero P, Moreno F (2005) Rgt1, a glucose sensing transcription factor, is required for transcriptional repression of the HXK2 gene in Saccharomyces cerevisiae. Biochem J 388:697–703PubMedCrossRefGoogle Scholar
  191. Papamichos-Chronakis M, Gligoris T, Tzamarias D (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8–Tup1 co-repressor. EMBO Rep 5:368–372PubMedCrossRefGoogle Scholar
  192. Pasula S, Jouandot II D, Kim JH (2007) Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett 581:3230–3234PubMedCrossRefGoogle Scholar
  193. Pasula S, Chakraborty S, Choi JH, Kim JH (2010) Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol 11:17PubMedCrossRefGoogle Scholar
  194. Peláez R, Herrero P, Moreno F (2010) Functional domains of yeast hexokinase 2. Biochem J 432:181–190PubMedCrossRefGoogle Scholar
  195. Peng G, Hopper JE (2000) Evidence for Gal3p’s cytoplasmic location and Gal80p’s dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol Cell Biol 20:5140–5148PubMedCrossRefGoogle Scholar
  196. Peng G, Hopper JE (2002) Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc Natl Acad Sci USA 99:8548–8553PubMedCrossRefGoogle Scholar
  197. Petit T, Diderich JA, Kruckeberg AL, Gancedo C, Van Dam K (2000) Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae. J Bacteriol 182:6815–6818PubMedCrossRefGoogle Scholar
  198. Petter R, Chang YC, Kwon-Chung KJ (1997) A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans. Infect Immun 65:4909–4917PubMedGoogle Scholar
  199. Platt A, Reece RJ (1998) The yeast galactose genetic switch is mediated by the formation of a Gal4p–Gal80p–Gal3p complex. EMBO J 17:4086–4091PubMedCrossRefGoogle Scholar
  200. Polish JA, Kim JH, Johnston M (2005) How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169:583–594PubMedCrossRefGoogle Scholar
  201. Post-Beittenmiller MA, Hamilton RW, Hopper JE (1984) Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol 4:1238–1245PubMedGoogle Scholar
  202. Powers J, Barlowe C (2002) Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Mol Biol Cell 13:880–891Google Scholar
  203. Prior C, Mamessier P, Fukuhara H, Chen XJ, Wésolowski-Louvel M (1993) The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol 13:3882–3889PubMedGoogle Scholar
  204. Ramos J, Szkutnicka K, Cirillo VP (1989) Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J Bacteriol 171:3539–3544PubMedGoogle Scholar
  205. Ran F, Bali M, Michels CA (2008) Hsp90/Hsp70 chaperone machine regulation of the Saccharomyces MAL-activator as determined in vivo using noninducible and constitutive mutant alleles. Genetics 179:331–343PubMedCrossRefGoogle Scholar
  206. Rechsteiner M (1988) Regulation of enzyme levels by proteolysis: the role of pest regions. Adv Enzym Regul 27:135–151CrossRefGoogle Scholar
  207. Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD, Thumm M, Wolf DH (2003) Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 14:1652–1663PubMedCrossRefGoogle Scholar
  208. Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16:157–167PubMedCrossRefGoogle Scholar
  209. Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333PubMedCrossRefGoogle Scholar
  210. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309PubMedCrossRefGoogle Scholar
  211. Riballo E, Herweijer M, Wolf DH, Lagunas R (1995) Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis. J Bacteriol 177:5622–5627PubMedGoogle Scholar
  212. Riley MI, Sreekrishna K, Bhairi S, Dickson RC (1987) Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport. Mol Gen Genet 208:145–151PubMedCrossRefGoogle Scholar
  213. Rintala E, Wiebe MG, Tamminen A, Ruohonen L, Penttila M (2008) Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision. BMC Microbiol 8:53PubMedCrossRefGoogle Scholar
  214. Rodriguez A, De La Cera T, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631PubMedGoogle Scholar
  215. Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A (2001) The pleiotropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3:207–214PubMedGoogle Scholar
  216. Rohde JR, Bastidas R, Puria R, Cardenas ME (2008) Nutritional control via TOR signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 11:153–160PubMedCrossRefGoogle Scholar
  217. Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201PubMedGoogle Scholar
  218. Rolland S, Hnatova M, Lemaire M, Leal-Sanchez J, Wesolowski-Louvel M (2006) Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis. Genetics 174:617–626PubMedCrossRefGoogle Scholar
  219. Rubio-Texeira M (2005) A comparative analysis of the GAL switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 5:1115–1128PubMedCrossRefGoogle Scholar
  220. Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM (2009) Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 10:134–149PubMedCrossRefGoogle Scholar
  221. Ruiz A, Serrano R, Arino J (2008) Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J Biol Chem 283:13923–13933PubMedCrossRefGoogle Scholar
  222. Sabina J, Brown V (2009) Glucose sensing network in Candida albicans—a sweet spot for fungal morphogenesis. Eukaryot Cell 8:1314–1320PubMedCrossRefGoogle Scholar
  223. Sabina J, Johnston M (2009) Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in S. cerevisiae. J Biol Chem 284:29635–29643Google Scholar
  224. Salema-Oom M, Valadao Pinto V, Goncalves P, Spencer-Martins I (2005) Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the α-glucoside transporter family. Appl Environ Microbiol 71:5044–5049PubMedCrossRefGoogle Scholar
  225. Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282PubMedCrossRefGoogle Scholar
  226. Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, Hofmann K, Thumm M, Wolf DH (2008) The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol Biol Cell 19:3323–3333PubMedCrossRefGoogle Scholar
  227. Sanz P (2007) Yeast as a model system to study glucose-mediated signalling and response. Front Biosci 12:2358–2371PubMedCrossRefGoogle Scholar
  228. Sanz P, Alms GR, Haystead TAJ, Carlson M (2000) Regulatory interactions between the Reg1–Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20:1321–1328PubMedCrossRefGoogle Scholar
  229. Sato T, Lopez MC, Sugioka S, Jigami Y, Baker HV, Uemura H (1999) The E-box DNA binding protein Sgc1p suppresses the gcr2 mutation, which is involved in transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. FEBS Lett 463:307–311PubMedCrossRefGoogle Scholar
  230. Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30:173–190PubMedCrossRefGoogle Scholar
  231. Schmelzle T, Beck T, Martin DE, Hall MN (2004) Activation of the Ras/cyclic AMP pathway suppresses a Tor deficiency in yeast. Mol Cell Biol 24:338–351PubMedCrossRefGoogle Scholar
  232. Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wolfl S, Almonte C, Watkins SC (1999) Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19:4561–4571PubMedGoogle Scholar
  233. Schulte F, Wieczorke R, Hollenberg CP, Boles E (2000) The HRT1 gene is a dominant mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol 182:540–542PubMedCrossRefGoogle Scholar
  234. Sellick CA, Reece RJ (2005) Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 30:405–412PubMedCrossRefGoogle Scholar
  235. Serrano R, Martin H, Casamayor A, Arino J (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281:39785–39795PubMedCrossRefGoogle Scholar
  236. Sexton JA, Brown V, Johnston M (2007) Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor. Yeast 24:847–860PubMedCrossRefGoogle Scholar
  237. Shamji AF, Kuruvilla FG, Schreiber SL (2000) Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr Biol 10:1574–1581PubMedCrossRefGoogle Scholar
  238. Sherwood PW, Carlson M (1999) Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p. Proc Natl Acad Sci USA 96:7415–7420PubMedCrossRefGoogle Scholar
  239. Sipos G, Kuchler K (2006) Fungal ATP-binding cassette (ABC) transporters in drug resistence and detoxication. Curr Drug Targets 7:471–481PubMedCrossRefGoogle Scholar
  240. Snowdon C, van der Merwe G (2012) Regulation of Hxt3 and Hxt7 turnover converges on the Vid30 complex and requires inactivation of the Ras/cAMP/PKA pathway in Saccharomyces cerevisiae. PLoS ONE 7:e50458PubMedCrossRefGoogle Scholar
  241. Snowdon C, Hlynialuk C, van der Merwe G (2007) Components of the Vid30c are needed for the rapamycin-induced degradation of the high-affinity hexose transporter Hxt7p in Saccharomyces cerevisiae. FEMS Yeast Res 8:204–216PubMedCrossRefGoogle Scholar
  242. Snowdon C, Schierholtz R, Poliszczuk P, Hughes S, van der Merwe G (2009) ETP1/YHL010c is novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. FEMS Yeast Res 9:372–380PubMedCrossRefGoogle Scholar
  243. Spielewoy N, Fink K, Kalashnikova TI, Walker JR, Wittenberg C (2004) Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signalling pathways. Mol Cell Biol 24:8994–9005PubMedCrossRefGoogle Scholar
  244. Stambuk BU, Araujo PS (2001) Kinetics of active α-glucoside transport in Saccharomyces cerevisiae. FEMS Yeast Res 1:73–78PubMedGoogle Scholar
  245. Stasyk OG, Maidan MM, Stasyk OV, Van Dijck P, Thevelein JM, Sibirny AA (2008) Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotropic yeast Hansenula polymorpha. Eukaryot Cell 7:735–746PubMedCrossRefGoogle Scholar
  246. Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJR, Schmidt MC, Hardie DG (2003) Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol 13:1299–1305PubMedCrossRefGoogle Scholar
  247. Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J (2006) Rim15 and the cross roads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div 1:3PubMedCrossRefGoogle Scholar
  248. Teste MA, Francois JM, Parrou JC (2010) Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family. J Biol Chem 285:26815–26824PubMedCrossRefGoogle Scholar
  249. Thoden JB, Sellick CA, Timson DJ, Reece RJ, Holden HM (2005) Molecular structure of Saccharomyces cerevisiae Gal1p, a bifunctional galactokinase and transcriptional inducer. J Biol Chem 280:36905–36911PubMedCrossRefGoogle Scholar
  250. Thoden JB, Sellick CA, Reece RJ, Holden HM (2007) Understanding a transcriptional paradigm at the molecular level: the structure of yeast Gal80p. J Biol Chem 282:1534–1538PubMedCrossRefGoogle Scholar
  251. Thoden JB, Ryan LA, Reece RJ, Holden HM (2008) The interaction between an acidic transcriptional activator and its inhibitor. The molecular basic of Gal4p recognition by Gal80p. J Biol Chem 283:30266–30272PubMedCrossRefGoogle Scholar
  252. Timson DJ, Reece RJ (2002) Kinetic analysis of yeast galactokinase: implications for transcriptional activation of the GAL genes. Biochimie 84:265–272PubMedCrossRefGoogle Scholar
  253. Tomás-Cobos L, Sanz P (2002) Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene. Biochem J 368:657–663PubMedCrossRefGoogle Scholar
  254. Tomás-Cobos L, Casadomé L, Mas G, Sanz P, Posas F (2004) Expression of the HXT1 low-affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem 279:22010–22019PubMedCrossRefGoogle Scholar
  255. Tomás-Cobos L, Viana R, Sanz P (2005) TOR kinase pathway and 14-3-3 proteins regulate glucose-induced expression of HXT1, a yeast low-affinity glucose transporter. Yeast 22:471–479PubMedCrossRefGoogle Scholar
  256. Traven A, Jelicic B, Sopta M (2006) Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 7:496–499PubMedCrossRefGoogle Scholar
  257. Treitel MA, Carlson M (1995) Repression by SSN6–TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92:3132–3136PubMedCrossRefGoogle Scholar
  258. Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18:6273–6280PubMedGoogle Scholar
  259. Tschopp JF, Emr SD, Field C, Schekman R (1986) GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J Bacteriol 166:313–318PubMedGoogle Scholar
  260. Vagnoli P, Coons DM, Bisson LF (1998) The C-terminal domain of Snf3p mediates glucose-responsive signal transduction in Saccharomyces cerevisiae. FEMS Microbiol Lett 160:31–36PubMedCrossRefGoogle Scholar
  261. Van Suylekom D, van Donselaar E, Blanchetot C, Do Ngoc LN, Humbel BM, Boonstra J (2007) Degradation of the hexose transporter Hxt5p in Saccharomyces cerevisiae. Biol Chem 99:13–23Google Scholar
  262. Vanoni M, Sollitti P, Goldenthal M, Marmur J (1989) Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Proc Nucleic Acids Res Mol Biol 37:281–322CrossRefGoogle Scholar
  263. Varma A, Singh BB, Karnani N, Lichtenberg-Frate H, Hofer M, Magee BB, Prasad R (2000) Molecular cloning and functional characterization of a glucose transporter, CaHGT1, of Candida albicans. FEMS Microbiol Lett 182:15–21PubMedCrossRefGoogle Scholar
  264. Veiga A, Arrabaca JD, Loureiro-Dias MC (2003) Cyanide-resistant respiration, a very frequent metabolic pathway in yeasts. FEMS Yeast Res 3:239–245PubMedCrossRefGoogle Scholar
  265. Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038PubMedCrossRefGoogle Scholar
  266. Verwaal R, Arako M, Kapur R, Verkleij AJ, Verrips CT, Boonstra J (2004) HXT5 expression is under control of STRE and HAP elements in the HXT5 promoter. Yeast 21:747–757PubMedCrossRefGoogle Scholar
  267. Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barcelo A, Arino J (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279:43614–43624PubMedCrossRefGoogle Scholar
  268. Wang X, Bali M, Medintz I, Michels CA (2002) Intracellular maltose is suficient to induce MAL gene expression in Saccharomyces cerevisiae. Eukaryot Cell 1:696–703PubMedCrossRefGoogle Scholar
  269. Wedaman KP, Reinke A, Anderson S, Yates J 3rd, McCaffery JM, Powers T (2003) Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell 14:1204–1223PubMedCrossRefGoogle Scholar
  270. Weirich J, Goffrini P, Kuger P, Ferrero I, Breunig KD (1997) Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis. Eur J Biochem 249:248–257PubMedCrossRefGoogle Scholar
  271. Wésolowski-Louvel M, Goffrini P, Ferrero I, Fukuhara H (1992a) Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. Mol Gen Genet 233:89–96PubMedCrossRefGoogle Scholar
  272. Wésolowski-Louvel M, Prior C, Bornecque D, Fukuhara H (1992b) Rag mutations involved in glucose metabolism in yeast: isolation and genetic characterization. Yeast 8:711–719CrossRefGoogle Scholar
  273. Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96:134–145PubMedCrossRefGoogle Scholar
  274. Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H (2008) Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601PubMedCrossRefGoogle Scholar
  275. Weusthuis RA, Pronk JT, van den Broek PJ, van Dijken JP (1994) Chemostat cultivation as a tool for studies on sugar transport in yeasts. Microbiol Rev 58:616–630PubMedGoogle Scholar
  276. Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128PubMedCrossRefGoogle Scholar
  277. Wiedemuth C, Breunig KD (2005) Role of Snf1p in regulation of intracellular sorting of the lactose and galactose transporter Lac12p in Kluyveromyces lactis. Eukaryot Cell 4:716–721PubMedCrossRefGoogle Scholar
  278. Wightman R, Bell R, Reece RJ (2008) Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Eukaryot Cell 7:2061–2068PubMedCrossRefGoogle Scholar
  279. Willems AR, Schwab M, Tyers M (2004) A hitchhiker’s guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 1695:133–170PubMedCrossRefGoogle Scholar
  280. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedCrossRefGoogle Scholar
  281. Yarger JG, Halvorson HO, Hopper JE (1984) Regulation of galactokinase (GAL1) enzyme accumulation in Saccharomyces cerevisiae. Mol Cell Biochem 61:173–187PubMedGoogle Scholar
  282. Ye L, Kruckeberg AL, Berden JA, van Dam K (1999) Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter. J Bacteriol 181:4673–4675PubMedGoogle Scholar
  283. Ye L, Berden JA, van Dam K, Kruckeberg AL (2001) Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae. Yeast 18:1257–1267PubMedCrossRefGoogle Scholar
  284. Zachariae W, Breunig KD (1993) Expression of the transcriptional actvator LAC9 (KlGAL4) in Kluyveromyces lactis is controlled by autoregulation. Mol Cell Biol 13:3058–3066PubMedGoogle Scholar
  285. Zaman S, Lipman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81PubMedCrossRefGoogle Scholar
  286. Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR (2009) Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5:245PubMedGoogle Scholar
  287. Zaragoza O, Rodriguez C, Gancedo C (2000) Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J Bacteriol 182:320–326PubMedCrossRefGoogle Scholar
  288. Zenke FT, Zachariae W, Lunkes A, Breunig KD (1993) Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Mol Cell Biol 13:7566–7576PubMedGoogle Scholar
  289. Zenke FT, Engles R, Vollenbroich V, Meyer J, Hollenberg CP, Breunig KD (1996) Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272:1662–1666PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Membrane Transport, Institute of PhysiologyAcademy of Sciences of the Czech Republic, v.v.i.Prague 4Czech Republic

Personalised recommendations