Current Genetics

, Volume 58, Issue 1, pp 49–58 | Cite as

Reconstruction of structural evolution in the trnL intron P6b loop of symbiotic Nostoc (Cyanobacteria)

Research Article


In this study we reconstruct the structural evolution of the hyper-variable P6b region of the group I trnLeu intron in a monophyletic group of lichen-symbiotic Nostoc strains and establish it as a useful marker in the phylogenetic analysis of these organisms. The studied cyanobacteria occur as photosynthetic and/or nitrogen-fixing symbionts in lichen species of the diverse Nephroma guild. Phylogenetic analyses and secondary structure reconstructions are used to improve the understanding of the replication mechanisms in the P6b stem–loop and to explain the observed distribution patterns of indels. The variants of the P6b region in the Nostoc clade studied consist of different combinations of five sequence modules. The distribution of indels together with the ancestral character reconstruction performed enables the interpretation of the evolution of each sequence module. Our results indicate that the indel events are usually associated with single nucleotide changes in the P6b region and have occurred several times independently. In spite of their homoplasy, they provide phylogenetic information for closely related taxa. Thus we recognize that features of the P6b region can be used as molecular markers for species identification and phylogenetic studies involving symbiotic Nostoc cyanobacteria.


Homoplasy Indels Lichens Nostoc RNA secondary structure 



S. Ares and J. Bois are acknowledged for helpful discussion. The project was funded by the Finnish Academy (grant to JR, project number 122288). We are grateful to the comments of the reviewers and the associated editor Stefan Hohmann.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrey R, Gibby M (2000) Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-trnF (GAA) regions. Mol Biol Evol 17:1146–1155PubMedGoogle Scholar
  2. Besendahl A, Qiu Y-L, Lee J, Palmer JD, Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I-intron. Curr Genet 37:12–23PubMedCrossRefGoogle Scholar
  3. Borsch T, Hilu W, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnT–trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576PubMedCrossRefGoogle Scholar
  4. Costa J-L, Paulsrud P, Lindblad P (2002) The cyanobacterial tRNALeu (UAA) intron: evolutionary patterns in a genetic marker. Mol Biol Evol 19(6):850–857Google Scholar
  5. Costa J-L, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc endophytically associated with two bryophyte species. Appl Environ Microbiol 67:4393–4396PubMedCrossRefGoogle Scholar
  6. Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24:1664–1677PubMedCrossRefGoogle Scholar
  7. Dirks RM, Pierce NA (2004) An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J Comput Chem 25:1295–1304PubMedCrossRefGoogle Scholar
  8. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49:65–88CrossRefGoogle Scholar
  9. Elhai J, Kato M, Cousins S, Lindblad P, Costa JL (2008) Very small mobile repeated elements in cyanobacterial genomes. Genome Res 18:1484–1499PubMedCrossRefGoogle Scholar
  10. Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059Google Scholar
  11. Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. The Bryologist 114(1):220–230CrossRefGoogle Scholar
  12. Han D, Fan Y, Hu Z (2009) An evaluation of four phylogenetic markers in Nostoc: implications for cyanobacterial phylogenetic studies at the intragenic level. Curr Microbiol 58:170–176PubMedCrossRefGoogle Scholar
  13. Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  14. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314PubMedCrossRefGoogle Scholar
  15. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of bayesian inference of phylogeny. Syst Biol 51:673–688PubMedCrossRefGoogle Scholar
  16. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498CrossRefGoogle Scholar
  17. Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phyl Evol 8:385–397CrossRefGoogle Scholar
  18. Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet 30:259–262PubMedCrossRefGoogle Scholar
  19. Müller K (2007) PRAP2-Likelihood and parsimony ratchet analysis, v.0.9Google Scholar
  20. Müller K, Quandt D, Müller J, Neinhuis C (2005) PhyDE® 0.995: Phylogenetic Data Editor,
  21. Müller KF, Borsch T, Khidir WH (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnF, and rbcL in basal angiosperms. Mol Phyl Evol 41:99–117CrossRefGoogle Scholar
  22. Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  23. O’Brien H, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378Google Scholar
  24. Oksanen I, Lohtander K, Sivonen K, Rikkinen J (2004) Repeat type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. Int J Syst Evol Microbiol 54:765–772PubMedCrossRefGoogle Scholar
  25. Pagel M, Meade A (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst Biol 53:571–581PubMedCrossRefGoogle Scholar
  26. Paquin B, Kathe SD, Nierzwicki-Bauer SA, Shub DA (1997) Origin and evolution of group-I introns in cyanobacterial tRNA genes. J Bacteriol 179:6798–6806PubMedGoogle Scholar
  27. Paulsrud P, Lindblad P (1998) Sequence variation of the tRNALeu intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl Environ Microbiol 64:310–315PubMedGoogle Scholar
  28. Paulsrud P, Rikkinen J, Lindblad P (1998) Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytol 139:517–524CrossRefGoogle Scholar
  29. Paulsrud P, Rikkinen J, Lindblad P (2000) Spatial patterns of photobiont diversity in some Nostoc-containing lichens. New Phytol 146:291–299CrossRefGoogle Scholar
  30. Paulsrud P, Rikkinen J, Lindblad P (2001) Field investigations on cyanobacterial specificity in Peltigera aphthosa. New Phytol 152:117–123CrossRefGoogle Scholar
  31. Pirie MD, Balcázar Vargas MP, Botermans M, Bakker F, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL-F region in Annonaceae: implications for plant molecular systematic. Am J Bot 94:1003–1016PubMedCrossRefGoogle Scholar
  32. Quandt D, Stech M (2005) Molecular evolution of the trnL (UAA) intron in bryophytes. Mol Phylogenet Evol 36:429–443PubMedCrossRefGoogle Scholar
  33. Quandt D, Müller K, Stech M, Frahm JP, Frey W, Hilu KW, Borsch T (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Mo Bot Gard 98:13–37Google Scholar
  34. Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from
  35. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guild share related cyanobacterial symbionts. Science 297(5580):357Google Scholar
  36. Rudi K, Jakobsen KS (1999) Complex evolutionary patterns of tRNALeu (UAA) group-I introns in cyanobacterial radiation. J Bacteriol 181:3445–3451PubMedGoogle Scholar
  37. Rudi K, Fossheim T, Jakobsen KS (2002) Nested evolution of a tRNALeu (UAA) group I intron by both horizontal intron transfer and recombination of the entire tRNA locus. J Bacteriol 184:666–671PubMedCrossRefGoogle Scholar
  38. Simon D, Fewer D, Friedl T, Bhattacharya D (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J Mol Evol 57:710–720PubMedCrossRefGoogle Scholar
  39. Sotiaux A, Enroth J, Olsson S, Quandt D, Vanderpoorten A (2009) When morphology and molecules tell us different stories: a case-in-point with Leptodon corsicus, a new and unique endemic moss species from Corsica. J Bryol 31:186–196CrossRefGoogle Scholar
  40. Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7PubMedCrossRefGoogle Scholar
  41. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  42. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14PubMedCrossRefGoogle Scholar
  43. Wright D, Prickett T, Helm RF, Potts M (2001) Form species Nostoc commune (Cyanobacteria). Int J Syst Evol Microbiol 51:1839–1852PubMedCrossRefGoogle Scholar
  44. Zadeh N, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173PubMedCrossRefGoogle Scholar
  45. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sanna Olsson
    • 1
  • Ulla Kaasalainen
    • 1
  • Jouko Rikkinen
    • 1
  1. 1.Department of BiosciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations