Current Genetics

, Volume 58, Issue 1, pp 35–47 | Cite as

[NSI +] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes

  • Anton A. Nizhnikov
  • Zalina M. Magomedova
  • Alexandr A. Rubel
  • Alexandra M. Kondrashkina
  • Sergey G. Inge-Vechtomov
  • Alexey P. Galkin
Research Article


We recently discovered the novel non-chromosomal determinant in Saccharomyces cerevisiae [NSI +] (nonsense suppression inducer), which causes omnipotent nonsense suppression in strains where the Sup35 N-terminal domain is deleted. [NSI +] possesses yeast prion features and does not correspond to previously identified yeast prion determinants. Here, we show that [NSI + ] enhances nonsense codon read-through and inhibits vegetative growth in S. cerevisiae. Using a large-scale overexpression screen to identify genes that impact the phenotypic effects of [NSI +], we found that the SUP35 and SUP45 genes encoding the translation termination factors eRF3 and eRF1, respectively, modulate nonsense suppression in [NSI +] strains. The VTS1 gene encodes an NQ-enriched RNA-binding protein that enhances nonsense suppression in [NSI +] and [nsi ] strains. We demonstrate that VTS1 overexpression, like [NSI +] induction, causes translational read-through and growth defects in S. cerevisiae.


Yeast [NSI+Prion SUP35 SUP45 VTS1 



We are grateful to E. Andreeva for technical assistance. We thank Y. Chernoff, A. Borchsenius, Y. Pavlov, and M. Ter-Avanesyan for kindly providing plasmids, A. Tomilin for helping with luminometer, and S. Chabelskaya for kindly gifting anti-Sup45 antibodies. This work was supported by Grants of Russian Foundation for Basic Research 10-04-00395-a to A. P. G, Program of Presidium of the Russian Academy of Science “Basic Sciences for Medicine” 08-12 to S. G. I.-V., Federal Grant-in-Aid Program “Human Capital for Science and Education in Innovative Russia” (Governmental Contract P1354), and St. Petersburg Governmental Grant 2.6/16-05/291-A for Ph.D. students to A. A. N. The authors acknowledge the Saint-Petersburg University for a research grant.


  1. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158PubMedCrossRefGoogle Scholar
  2. Aviv T, Lin Z, Lau S, Rendl LM, Sicheri F, Smibert CA (2003) The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat Struct Biol 10:614–621PubMedCrossRefGoogle Scholar
  3. Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330PubMedCrossRefGoogle Scholar
  4. Bonneaud N, Ozier-Kalogeropoulos O, Li GY, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G (2004) Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal. Mol Genet Genomics 272:297–307PubMedCrossRefGoogle Scholar
  7. Chernoff YO, Derkach IL, Inge-Vechtomov SG (1993) Multicopy SUP35 gene induces de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268–270Google Scholar
  8. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI +]. Science 268:880–884PubMedCrossRefGoogle Scholar
  9. Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778PubMedCrossRefGoogle Scholar
  10. Cox BS (1965) Psi, a cytoplasmic suppressor of super suppressors in yeast. Heredity 20:505–521CrossRefGoogle Scholar
  11. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519PubMedGoogle Scholar
  12. Derkatch IL, Bradley ME, Hong JY, Liebman SW (2001) Prions affect the appearance of other prions: the story of [PIN]. Cell 106:171–182PubMedCrossRefGoogle Scholar
  13. Dilcher M, Kohler B, von Mollard GF (2001) Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J Biol Chem 276:34537–34544PubMedCrossRefGoogle Scholar
  14. Du Z, Park KW, Yu H, Fan Q, Li L (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 40:460–465PubMedCrossRefGoogle Scholar
  15. Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M (1994) A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701–703PubMedCrossRefGoogle Scholar
  16. Harrison PM, Gerstein M (2003) A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol 4:40CrossRefGoogle Scholar
  17. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88(16):7276–7280PubMedCrossRefGoogle Scholar
  18. Hoshino S, Imai M, Kobayashi T, Uchida N, Katada T (1999) The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 30-Poly(A) tail of mRNA. Direct association of erf3/GSPT with polyadenylate binding protein. J Biol Chem 274:16677–16680PubMedCrossRefGoogle Scholar
  19. Hosoda N et al (2003) Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 278:38287–38291PubMedCrossRefGoogle Scholar
  20. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Lab Press, New YorkGoogle Scholar
  21. Keeling KM, Lanier J, Du M, Salas-Marko J, Gao L, Kaenjak-Angeletti A, Bedwell DM (2004) Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10:691–703PubMedCrossRefGoogle Scholar
  22. Lacroute F (1971) Non-Mendilian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 106:519–522Google Scholar
  23. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  24. Maderazo AB, He F, Mangus DA, Jacobson A (2000) Upf1p control of nonsense mRNA translation is regulated by Nmd2p and Upf3p. Mol Cell Biol 13:4591–4603CrossRefGoogle Scholar
  25. McNabb DS, Reed R, Marciniak RA (2005) Dual luciferase assay system for rapid assessment of gene expression in Saccharomyces cerevisiae. Eukaryot Cell 4:1539–1549PubMedCrossRefGoogle Scholar
  26. Moskalenko SE, Chabelskaya SV, Inge-Vechtomov SG, Philippe M, Zhouravleva GA (2003) Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Mol Biol 4:2Google Scholar
  27. Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 19:1325–1333PubMedGoogle Scholar
  28. Ono B, Yoshida R, Kamiya K, Sugimoto T (2005) Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae. Genes Genet Syst 80:311–316PubMedCrossRefGoogle Scholar
  29. Osherovich LZ, Weissman JS (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell 106:183–194PubMedCrossRefGoogle Scholar
  30. Patel BK, Liebman SW (2007) “Prion-proof” for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132–405) induces [PIN+]. J Mol Biol 365:773–782PubMedCrossRefGoogle Scholar
  31. Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11:344–349Google Scholar
  32. Prusiner SB (1982) Novel proteinaceous infections particles cause scrapie. Science 216:136–144PubMedCrossRefGoogle Scholar
  33. Rendl L, Bieman M, Smibert C (2008) S. cerevisiae Vts1p induces deadenylation-dependent transcript degradation and interacts with the Ccr4p-Pop2p-Not deadenylase complex. RNA 14:1328–1336PubMedCrossRefGoogle Scholar
  34. Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, Volkov K, Mironova L (2010) Non-Mendelian determinant [ISP +] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci USA 107:10573–10577PubMedCrossRefGoogle Scholar
  35. Rubel AA, Saifitdinova AF, Lada AG, Nizhnikov AA, Inge-Vechtomov SG, Galkin AP (2008) Yeast chaperone Hspl04 regulates gene expression on the posttranscriptional level. Mol Biol (Mosk) 42:123–130CrossRefGoogle Scholar
  36. Saifitdinova AF, Nizhnikov AA, Lada AG, Rubel AA, Magomedova ZM, Ignatova VV, Inge-Vechtomov SG, Galkin AP (2010) [NSI +]: a novel non-Mendelian suppressor determinant in Saccharomyces cerevisiae. Curr Genet 56:467–478PubMedCrossRefGoogle Scholar
  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Lab Press, New YorkGoogle Scholar
  38. Serpell LC, Sunde M, Blake CCF (1997) The molecular basis of amyloidosis. Cell Mol Life Sci 53:871–887PubMedCrossRefGoogle Scholar
  39. Sherman F, Fink GR, Hinks JB (1986) Methods in yeast genetics. Cold Spring Harbor Lab Press, New YorkGoogle Scholar
  40. Si K, Choi Y, White-Grindley E, MajumdarA KandelE (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140:421–435PubMedCrossRefGoogle Scholar
  41. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27PubMedGoogle Scholar
  42. Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172Google Scholar
  43. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14:4365–4373Google Scholar
  44. Valouev IA, Fominov GV, Sokolova EE, Smirnov VN, Ter-Avanesyan MD (2009) Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast. BMC Mol Biol 10:60PubMedCrossRefGoogle Scholar
  45. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808PubMedCrossRefGoogle Scholar
  46. Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569PubMedCrossRefGoogle Scholar
  47. Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T (2007) Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol 5:611–618PubMedCrossRefGoogle Scholar
  48. Zhouravleva G, Frolova L, LeGoff X, LeGuelec R, Inge-Vechtomov SG, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anton A. Nizhnikov
    • 1
    • 2
  • Zalina M. Magomedova
    • 1
    • 2
  • Alexandr A. Rubel
    • 1
    • 2
  • Alexandra M. Kondrashkina
    • 2
  • Sergey G. Inge-Vechtomov
    • 1
    • 2
  • Alexey P. Galkin
    • 1
    • 2
  1. 1.St. Petersburg Branch Vavilov Institute of General Genetics (Russian Academy of Science)St. PetersburgRussia
  2. 2.Department of Genetics and BreedingSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations